5 research outputs found

    System Identification Method for Brake Particle Emission Measurements of Passenger Car Disc Brakes on a Dynamometer

    Get PDF
    Besides particulate emissions from engine exhausts, which are already regulated by emission standards, passenger car disc brakes are a source of particulate matter. With the current car fleet it is estimated that up to 21% of the total traffic related PM10 emissions in urban environments originate from brake wear and reduction of brake dust emissions is subject of current research. For the purpose of reducing brake dust emissions by choosing low-emission operating points of the disc brake, the knowledge of the emission behavior depending on brake pressure, wheel speed, temperature and friction history is of interest. According to the current state of research, theoretical white box modeling of the emission behavior is complicated due to the complexity of tribological contact between pad and disc. Thus experimental black box modeling is supposed to describe emission behavior. In order to minimize the influence of disturbances and therefore to improve prediction accuracy of such empirical models, system identification methods based on periodical test signals, such as brake pressure sine, are used for this application. To adopt these test signals, which are established in transfer function measurements, to the application of brake particle measurements and to develop an experimental design, system theoretical quantities, such as cutoff frequency, signal to noise ratio and hysteresis, are determined in dynamometer tests. Therefore measurements of the system’s response to step and sine test signals are analyzed. System identification is executed and the applicability of periodical test signals to brake particle measurements is proven

    Statistical Assessment and Temperature Study from the Interlaboratory Application of the WLTP–Brake Cycle

    No full text
    The relative contribution of brake emissions to traffic-induced ambient Particulate Matter (PM) concentrations has increased over the last decade. Nowadays, vehicles’ brakes are recognised as an important source of non-exhaust emissions. Up to now, no standardised method for measuring brake particle emissions exists. For that reason, the Particle Measurement Programme (PMP) group has been working on the development of a commonly accepted method for sampling and measuring brake particle emissions. The applied braking cycle is an integral part of the overall methodology. In this article, we present the results of an interlaboratory study exploring the capacity of existing dynamometer setups to accurately execute the novel Worldwide Harmonised Light-Duty Vehicles Test Procedure (WLTP)–brake cycle. The measurements took place at eight locations in Europe and the United States. Having several dynamometers available enabled the coordination and execution of the intended exercise, to determine the sources of variability and provide recommendations for the correct application of the WLTP–brake cycle on the dyno. A systematic testing schedule was applied, followed by a thorough statistical analysis of the essential parameters according to the ISO 5725 standards series. The application of different control programmes influenced the correct replication of the cycle. Speed control turned out to be more accurate and precise than deceleration control. A crucial output of this interlaboratory study was the quantification of standard deviations for repeatability (between repeats), sample effect (between tests), laboratory effect (between facilities), and total reproducibility. Three critical aspects of the statistical analysis were: (i) The use of methods for heterogeneous materials; (ii) robust algorithms to reduce the artificial increase in variability from values with significant deviation from the normal distribution; and (iii) the reliance on the graphical representation of results for ease of understanding. Even if the study of brake emissions remained out of the scope of the current exercise, useful conclusions are drawn from the analysis of the temperature profile of the WLTP–brake cycle. Urban braking events are generally correlated to lower disc temperature. Other parameters affecting the brake temperature profile include the correct application of soak times, the temperature measurement method, the proper conditioning of incoming cooling air and the adjustment of the cooling airspeed
    corecore