89 research outputs found

    Outage Performance of Multi-tier UAV Communication with Random Beam Misalignment

    Full text link
    By exploiting the degree of freedom on the altitude, unmanned aerial vehicle (UAV) communication can provide ubiquitous communication for future wireless networks. In the case of concurrent transmission of multiple UAVs, the directional beamforming formed by multiple antennas is an effective way to reduce co-channel interference. However, factors such as airflow disturbance or estimation error for UAV communications can cause the occurrence of beam misalignment. In this paper, we investigate the system performance of a multi-tier UAV communication network with the consideration of unstable beam alignment. In particular, we propose a tractable random model to capture the impacts of beam misalignment in the 3D space. Based on this, by utilizing stochastic geometry, an analytical framework for obtaining the outage probability in the downlink of a multi-tier UAV communication network for the closest distance association scheme and the maximum average power association scheme is established. The accuracy of the analysis is verified by Monte-Carlo simulations. The results indicate that in the presence of random beam misalignment, the optimal number of UAV antennas needs to be adjusted to be relatively larger when the density of UAVs increases or the altitude of UAVs becomes higher

    A novel gas ionization sensor using Pd nanoparticle-capped ZnO

    Get PDF
    A novel gas ionization sensor using Pd nanoparticle-capped ZnO (Pd/ZnO) nanorods as the anode is proposed. The Pd/ZnO nanorod-based sensors, compared with the bare ZnO nanorod, show lower breakdown voltage for the detected gases with good sensitivity and selectivity. Moreover, the sensors exhibit stable performance after more than 200 tests for both inert and active gases. The simple, low-cost, Pd/ZnO nanorod-based field-ionization gas sensors presented in this study have potential applications in the field of gas sensor devices

    Joint Beamforming and Offloading Design for Integrated Sensing, Communication and Computation System

    Full text link
    Mobile edge computing (MEC) is powerful to alleviate the heavy computing tasks in integrated sensing and communication (ISAC) systems. In this paper, we investigate joint beamforming and offloading design in a three-tier integrated sensing, communication and computation (ISCC) framework comprising one cloud server, multiple mobile edge servers, and multiple terminals. While executing sensing tasks, the user terminals can optionally offload sensing data to either MEC server or cloud servers. To minimize the execution latency, we jointly optimize the transmit beamforming matrices and offloading decision variables under the constraint of sensing performance. An alternating optimization algorithm based on multidimensional fractional programming is proposed to tackle the non-convex problem. Simulation results demonstrates the superiority of the proposed mechanism in terms of convergence and task execution latency reduction, compared with the state-of-the-art two-tier ISCC framework.Comment: 5 pages, 4 figures, submitted to IEEE journals for possible publicatio

    Joint Transmitter Design for Robust Secure Radar-Communication Coexistence Systems

    Full text link
    This paper investigates the spectrum sharing between a multiple-input single-output (MISO) secure communication system and a multiple-input multiple-output (MIMO) radar system in the presence of one suspicious eavesdropper. We jointly design the radar waveform and communication beamforming vector at the two systems, such that the interference between the base station (BS) and radar is reduced, and the detrimental radar interference to the communication system is enhanced to jam the eavesdropper, thereby increasing secure information transmission performance. In particular, by considering the imperfect channel state information (CSI) for the user and eavesdropper, we maximize the worst-case secrecy rate at the user, while ensuring the detection performance of radar system. To tackle this challenging problem, we propose a two-layer robust cooperative algorithm based on the S-lemma and semidefinite relaxation techniques. Simulation results demonstrate that the proposed algorithm achieves significant secrecy rate gains over the non-robust scheme. Furthermore, we illustrate the trade-off between secrecy rate and detection probability

    Sensing Aided Covert Communications: Turning Interference into Allies

    Full text link
    In this paper, we investigate the realization of covert communication in a general radar-communication cooperation system, which includes integrated sensing and communications as a special example. We explore the possibility of utilizing the sensing ability of radar to track and jam the aerial adversary target attempting to detect the transmission. Based on the echoes from the target, the extended Kalman filtering technique is employed to predict its trajectory as well as the corresponding channels. Depending on the maneuvering altitude of adversary target, two channel models are considered, with the aim of maximizing the covert transmission rate by jointly designing the radar waveform and communication transmit beamforming vector based on the constructed channels. For the free-space propagation model, by decoupling the joint design, we propose an efficient algorithm to guarantee that the target cannot detect the transmission. For the Rician fading model, since the multi-path components cannot be estimated, a robust joint transmission scheme is proposed based on the property of the Kullback-Leibler divergence. The convergence behaviour, tracking MSE, false alarm and missed detection probabilities, and covert transmission rate are evaluated. Simulation results show that the proposed algorithms achieve accurate tracking. For both channel models, the proposed sensing-assisted covert transmission design is able to guarantee the covertness, and significantly outperforms the conventional schemes.Comment: 13 pages, 12 figures, submitted to IEEE journals for potential publicatio

    SCULPTOR: Skeleton-Consistent Face Creation Using a Learned Parametric Generator

    Full text link
    Recent years have seen growing interest in 3D human faces modelling due to its wide applications in digital human, character generation and animation. Existing approaches overwhelmingly emphasized on modeling the exterior shapes, textures and skin properties of faces, ignoring the inherent correlation between inner skeletal structures and appearance. In this paper, we present SCULPTOR, 3D face creations with Skeleton Consistency Using a Learned Parametric facial generaTOR, aiming to facilitate easy creation of both anatomically correct and visually convincing face models via a hybrid parametric-physical representation. At the core of SCULPTOR is LUCY, the first large-scale shape-skeleton face dataset in collaboration with plastic surgeons. Named after the fossils of one of the oldest known human ancestors, our LUCY dataset contains high-quality Computed Tomography (CT) scans of the complete human head before and after orthognathic surgeries, critical for evaluating surgery results. LUCY consists of 144 scans of 72 subjects (31 male and 41 female) where each subject has two CT scans taken pre- and post-orthognathic operations. Based on our LUCY dataset, we learn a novel skeleton consistent parametric facial generator, SCULPTOR, which can create the unique and nuanced facial features that help define a character and at the same time maintain physiological soundness. Our SCULPTOR jointly models the skull, face geometry and face appearance under a unified data-driven framework, by separating the depiction of a 3D face into shape blend shape, pose blend shape and facial expression blend shape. SCULPTOR preserves both anatomic correctness and visual realism in facial generation tasks compared with existing methods. Finally, we showcase the robustness and effectiveness of SCULPTOR in various fancy applications unseen before.Comment: 16 page, 13 fig

    Secrecy Balancing over Two-User MISO Interference Channels with Rician Fading

    Get PDF
    This paper considers a 2-user multiple-input single-output (MISO) interference channel with confidential messages (IFC-CM), in which the Rician channel model is assumed. The coordinated beamforming vectors at the two transmitters have the similar parameterizations as those for perfect CSI, which could be optimized jointly and achieved by agreeing on the real parameters between the two users. Our main contribution is that a quadratic relationship between the two real-valued parameters can be derived for the Rician channel to reach the ergodic secrecy rate balancing point. Simulation results present the secrecy performance over the 2-user MISO IFC-CM scenario
    corecore