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Wavelet transform is an effective method for removal of noise from image. But traditional wavelet transform cannot improve
the smooth effect and reserve image’s precise details simultaneously; even false Gibbs phenomenon can be produced. This paper
proposes a new image denoising method based on adaptive multiscale morphological edge detection beyond the above limitation.
Firstly, the noisy image is decomposed by using one wavelet base.Then, the image edge is detected by using the adaptive multiscale
morphological edge detection based on thewavelet decomposition.On this basis, wavelet coefficients belonging to the edge position
are dealt with with the improved wavelet domain wiener filtering, and the others are dealt with with the improved Bayesian
threshold and the improved threshold function. Finally, wavelet coefficients are inversely processed to obtain the denoised image.
Experimental results show that this method can effectively remove the image noise without blurring edges and highlight the
characteristics of image edge at the same time. The validation results of the denoised images with higher peak signal to noise
ratio (PSNR) and structural similarity (SSIM) demonstrate their robust capability for real applications in the future.

1. Introduction

The image will be contaminated by random noise in the pro-
cess of collection and transmission, which would inevitably
lead to the degradation of the image quality in the subsequent
process such as image compression and feature extraction.
Hence, it is important to estimate the original image from the
noisy image [1].

Image denoising is the basic problem of signal recovery in
image process and is required to reduce or eliminate the noise
of the observed images, while preserving the texture, corner,
and edge details of the original image as much as possible
is needed. Many scholars have devoted a lot of energy to
the study of image denoising and put forward many effective
methods over the past few decades.Wavelet analysis has good
localization properties and multiresolution characteristics
in either time domain or frequency domain, which makes
it more effective to distinguish useful signal and noise.
Therefore, wavelet has become a very effective method for
the image denoising [2–10]. At present, there aremainly three
kinds of wavelet denoising techniques to remove noise from

image data. The first is to separate signal from noise through
the singularity detection with wavelets [11–13]; the second
is to reduce image noise through the wavelet coefficient
thresholding method [14–16]; and the third is to reduce
image noise through the wavelet domain Bayesian threshold
criterion coefficient of shrinkage method [17–19]. Among
them, wavelet coefficient thresholding method is the most
widely used method for the image denoising because of its
simpleness and effectiveness.The basic idea of wavelet coeffi-
cient thresholdingmethod is derived from theory of Donoho.
Thegeneral threshold denoisingmethod based on orthogonal
wavelet transform is initially presented by Donoho, which is
based on the assumption that the complex noise reduction
problem can be solved by simple coefficient process. How-
ever, the estimation of Donoho threshold does not have the
adaptability for different scale spaces andwill zero thewavelet
coefficients in excess, which will lead to the loss in image
details. So many scholars have proposed different scales of
wavelet coefficients using the adaptive threshold to reduce
noise, such as VisuShrink threshold, SureShrink threshold,
and NormalShrink threshold. Although these algorithms can
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obtain better denoising effect to some extent, more details are
eliminated so that the image quality is severely reduced; even
false Gibbs phenomenon can be produced.

In this paper, we propose a new image denoising method
based on adaptive multiscale morphological edge detec-
tion. Traditional or modern image edge detection method
is accurate for the edge location of the nonnoisy image.
However, the edge of the noisy image cannot be detected
by it. In contrast, adaptive multiscale morphological edge
detection method is able to locate the edge location of noisy
image accurately. This is because the adaptive multiscale
morphological edge detection method uses mathematical
morphology theory based on the multistructuring elements
and is constructed by using the improved morphological
edge detection operator. Therefore, the adaptive multiscale
morphological edge detection method can preserve more
edge information by changing the size of structuring elements
[20–22]. We decompose the noisy image by using wavelet
firstly. Then, the edge of the image is detected via adaptive
multiscale morphological edge detection according to the
characteristics of the wavelet decomposition. On this basis,
the wavelet coefficients belonging to the edge position are
dealt with with the improved wavelet domain wiener filtering
and the others are dealt with with the improved Bayesian
threshold and the improved threshold function. Finally,
wavelet coefficients are inversely processed to obtain the
denoised image. The experimental results show that this
method can not only remove the noise without blurring
of edges and important characteristics of images but also
highlight the characteristics of image edge comparedwith the
existing methods. The denoised images obtain higher PSNR
and higher SSIM; what is more, the denoising effect is better
than the previous article [23–28]; hence, the method is of
great application value.

2. Adaptive Multiscale Morphological
Edge Detection

Suppose that the model of the image with Gauss white noise
is as follows:

𝑦𝑛 (𝑖, 𝑗) = 𝑥 (𝑖, 𝑗) + 𝑛 (𝑖, 𝑗) , (1)

where (𝑖, 𝑗) denotes the location of a pixel in the whole image
space: 𝑖 = 1, 2, . . . ,𝑀, and 𝑗 = 1, 2, . . . , 𝑁; 𝑥(𝑖, 𝑗) is the
original image (not containing Gauss white noise) and its size
is𝑀×𝑁; 𝑛(𝑖, 𝑗) is Gauss white noise.

The wavelet transform of the noisy image 𝑦𝑛(𝑖, 𝑗) is as
follows:

𝑊𝑦 = 𝑊𝑥 +𝑊𝑛, (2)

where 𝑊𝑛 is the wavelet coefficient of the noise, 𝑊𝑥 is the
wavelet coefficient of the original image, and𝑊𝑦 is thewavelet
coefficient of the noisy image.

Assume that 𝑓(𝑥, 𝑦) represents a gray-scale image and𝑏(𝑥, 𝑦) is the given structuring element. 𝐷𝑓 and 𝐷𝑏 are the
domains of definition of 𝑓(𝑥, 𝑦) and 𝑏(𝑥, 𝑦), respectively.

The dilation operation of 𝑏(𝑥, 𝑦) to the gray-scale image𝑓(𝑥, 𝑦) is as follows:
𝑓 ⊕ 𝑏 = max {𝑓 (𝑠 − 𝑥, 𝑡 − 𝑦)
+ 𝑏 (𝑥, 𝑦) | (𝑠 − 𝑥) , (𝑡 − 𝑦) ∈ 𝐷𝑓; (𝑥, 𝑦) ∈ 𝐷𝑏} . (3)

The erosion operation of 𝑏(𝑥, 𝑦) to the gray-scale image𝑓(𝑥, 𝑦) is as follows:
𝑓Θ𝑏 = min {𝑓 (𝑠 + 𝑥, 𝑡 + 𝑦)
− 𝑏 (𝑥, 𝑦) | (𝑠 + 𝑥) , (𝑡 + 𝑦) ∈ 𝐷𝑓; (𝑥, 𝑦) ∈ 𝐷𝑏} . (4)

The opening operation of 𝑏(𝑥, 𝑦) to the gray-scale image𝑓(𝑥, 𝑦) is as follows:
𝑓 ∘ 𝑏 = (𝑓Θ𝑏) ⊕ 𝑏. (5)

The closing operation of 𝑏(𝑥, 𝑦) to the gray-scale image𝑓(𝑥, 𝑦) is as follows:
𝑓 ∙ 𝑏 = (𝑓 ⊕ 𝑏)Θ𝑏. (6)

Assume that 𝐸(𝑥, 𝑦) represents the image edge detec-
tion operator. Thus, an antinoise edge detection operator is
obtained by using morphological dilation, erosion, opening,
and closing operation.

Antinoise dilation operator is as follows:

𝐹1 = 𝑓 ⊕ 𝑏 − 𝑓 ∙ 𝑏. (7)

Antinoise erosion operator is as follows:

𝐹2 = 𝑓 ∘ 𝑏 − 𝑓Θ𝑏. (8)

Antinoise dilation erosion operator is as follows:

𝐹3 = (𝑓 ∘ 𝑏) ⊕ 𝑏 − (𝑓 ∙ 𝑏)Θ𝑏. (9)

Let

𝐹min (𝑥, 𝑦) = min {𝐹1 (𝑥, 𝑦) , 𝐹2 (𝑥, 𝑦) , 𝐹3 (𝑥, 𝑦)} (10)

𝐹max (𝑥, 𝑦) = max {𝐹1 (𝑥, 𝑦) , 𝐹2 (𝑥, 𝑦) , 𝐹3 (𝑥, 𝑦)} (11)

𝐹dec (𝑥, 𝑦) = 𝐹max (𝑥, 𝑦) − 𝐹min (𝑥, 𝑦) . (12)

Since the edge of the image is weak and not continuous,
we propose the following improved morphological edge
detection operator to improve the image effect:

𝐸 (𝑥, 𝑦) = 𝐹3 (𝑥, 𝑦) + 𝛼𝐹dec (𝑥, 𝑦) , (13)

where 0 < 𝛼 < 1 is an adjustable parameter. Because
the improved morphological edge detection operator can
add image edge information, the discontinuity in image is
reduced to some extent. When 𝛼 becomes bigger, more
edge information can be detected, but antinoise performance
will drop. In order to strike a balance between more edge
information and antinoise performance, usually 𝛼 is between
0.3 and 0.6.
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In order to reduce image noise and detect the detailed
information of image edge in different directions, the choos-
ing of structuring elements is a key factor in morphological
image processing.The size and shape of structuring elements
decide the final result of detected edges. Multiscale morpho-
logical edge detection is to use different sizes of structuring
elements to extract edge characteristics of the image. Large
scale structuring elements have good ability to remove the
noise, but the detection result is rough. On the other hand,
the ability to remove noise is weak for small scale structuring
elements but can detect the edge details very well.

We use multiscale morphological edge detection to fil-
ter noise and keep image details simultaneously. Generally
speaking, the 3 × 3, 5 × 5, and 7 × 7 windows are usually
used, among which 3 × 3 window is the fastest, and its
edge is the most exquisite [20]. In this paper, we choose six
representative structuring elements as follows:

𝑏1 = [[
[
0 1 0
1 1 1
0 1 0

]]
]

𝑏2 = [[
[
0 1 0
1 1 0
0 0 0

]]
]

𝑏3 = [[
[
0 0 0
0 1 1
0 1 0

]]
]

𝑏4 = [[
[
0 0 0
1 1 0
0 1 0

]]
]

𝑏5 = [[
[
0 1 0
0 1 1
0 0 0

]]
]

𝑏6 = [[
[
1 0 1
0 1 0
1 0 1

]]
]
,

(14)

where 𝑏𝑖 is 3 × 3 square window: 𝑖 = 1, 2, . . . , 6.
Multiscale structuring elements are defined as 𝑛𝑏 = 𝑏 ⊕𝑏 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑏, where 𝑛 is scale parameter (a positive integer) and𝑏 is the given structuring element. In addition, 𝑛𝑏 indicates

that the large scale structuring elements are obtained by the
dilation of small scale elements.

The edge detection operators 𝐸𝑖(𝑥, 𝑦) (𝑖 = 1, 2, . . . , 6) of
six representative structuring elements above can be obtained
by (13). Because different structuring elements have different
adaptability to detect image edge, in order to preserve more
edge information and make the edge more smooth, we first
give different weight coefficients 𝛽𝑛𝑖 to 𝐸𝑖(𝑥, 𝑦). Because per-
formance of antinoise of the large scale structuring elements

is more obvious but that of small scale structuring elements
is relatively weak, it is necessary to utilize this feature to
distinguish the edge of image. So we introduce the adaptive
coefficient 𝛽𝑛𝑖, which can better filter out the pseudoedge
at large scale and take the advantages of multiscale edge
detection and better detect the edge of the image. Then sum
up 𝐸𝑖(𝑥, 𝑦); that is, 𝐸𝑛𝑏(𝑥, 𝑦) = ⋃6𝑖=1 𝛽𝑛𝑖𝐸𝑖(𝑥, 𝑦), where 𝑛
represents scale. Image edge can be detected using 𝐸𝑛𝑏(𝑥, 𝑦).
By changing the scale 𝑛 of the structuring elements, the image
edge information is obtained. The new edge is as follows:

𝑓󸀠 (𝑥, 𝑦) = 𝑙2∑
𝑛=𝑙

1

𝐸𝑛𝑏 (𝑥, 𝑦) , (15)

where [𝑙1, 𝑙2] is the range of scale 𝑛.
The weight coefficient 𝛽𝑛𝑖 is calculated as follows:

(1) Get the mean filtered image under different scales
structuring elements:

𝑓𝑛 (𝑥, 𝑦) = 𝑓 (𝑓 ∘ 𝑛𝑏 ∙ 𝑛𝑏 + 𝑓 ∙ 𝑛𝑏 ∘ 𝑛𝑏)2 . (16)

(2) Calculate the standard deviation under different
scales: Δ 𝑛 = |𝑓 − 𝑓𝑛|.

(3) Based on the fact that the weight coefficients 𝛽𝑛𝑖 are
inversely proportional to the standard deviation Δ 𝑛,
that is to say, large scale weight coefficients are bigger
and small scale weight coefficients are smaller, we
have

𝛽𝑛𝑖 = 𝑘𝑖Δ 𝑙
2
−𝑛

∑𝑙2
𝑛=𝑙

1

Δ 𝑛 , (17)

where 𝑘𝑖 represents adjustable parameters related with 𝑏𝑖: 𝑖 =1, 2, . . . , 6.
3. Improved Threshold Denoising

Bayesian threshold is derived through the statistical theory
of Bayes. For a given high frequency subband, the traditional
threshold value is

𝜆 = 𝜎2Noise𝜎Image
, (18)

where 𝜎Noise and 𝜎Image are the estimation for the noise
variance and the standard deviation of the image on the
subband, respectively.

The noise variance is estimated as follows:

𝜎Noise = median (󵄨󵄨󵄨󵄨󵄨𝑌𝑖,𝑗󵄨󵄨󵄨󵄨󵄨)0.6745 , (19)

where𝑌𝑖,𝑗 is thewavelet coefficient of subbandHH1 ofwavelet
decomposition and median(⋅) is the median function.
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The standard deviation of the image is estimated as
follows:

𝜎2Image =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1𝐼 × 𝐽∑
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨𝑊𝐼×𝐽 (𝑠𝑖,𝑗)󵄨󵄨󵄨󵄨󵄨2 − (𝜎Noise)2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (20)

where𝑊𝐼×𝐽 presents a template with a size of 𝐼 × 𝐽;𝑊𝐼×𝐽(𝑠𝑖,𝑗)
present coefficient values of the image in the template.
However, the distribution characteristics of the noise during
the wavelet decomposition are not taken into account in (18).

Here, we introduce an adaptive coefficient 𝜂, which
changes with wavelet coefficients adaptively. Therefore, the
adaptive threshold is as follows:

𝑇 = 𝜂𝜆, (21)

where 𝜂 = 1/log(𝐾 + 1); 𝐾 is the number of decomposition
levels. We improve the traditional threshold in (18) so that
the improved Bayesian threshold in (21) can change with
the number of decomposition levels 𝐾 adaptively. When
the decomposition level 𝐾 increases, the threshold becomes
smaller, which is in line with distribution characteristics of
the noise decomposed by wavelet. By this way, the noise is
removed to the maximum extent possible, but the wavelet
coefficients of the original image are not affected.

Next, we propose the improved threshold function as
follows:

𝑓{{{{{
sgn (𝑦 (𝑖, 𝑗)) 𝑝√󵄨󵄨󵄨󵄨𝑦 (𝑖, 𝑗)󵄨󵄨󵄨󵄨𝑝 − ( 𝑇󵄨󵄨󵄨󵄨𝑦 (𝑖, 𝑗)󵄨󵄨󵄨󵄨)

𝑝 𝑇𝑝 󵄨󵄨󵄨󵄨𝑦 (𝑖, 𝑗)󵄨󵄨󵄨󵄨 > 𝑇
0 󵄨󵄨󵄨󵄨𝑦 (𝑖, 𝑗)󵄨󵄨󵄨󵄨 ≤ 𝑇,

(22)

where 𝑝 can be adjusted according to the wavelet coefficients𝑦(𝑖, 𝑗) and usually 𝑝 = 20𝑟. Here, 𝑟 is the percentage of
the wavelet coefficients 𝑦(𝑖, 𝑗) and is greater than 2𝑇. The
improved threshold function 𝑓 can automatically change
with wavelet coefficients, which can effectively overcome
the defects of hard threshold function and soft threshold
function.

4. Improved Wavelet Domain Wiener Filtering

Wiener filter is a locally adaptive linear filter using obser-
vation window. Assuming that the size of the observation
window is𝑚 × 𝑛, usually take𝑚 = 𝑛. The following steps are
locally adaptive wiener filtering in wavelet domain and can
obtain the denoised image.

(1) Calculate the variance of thewavelet coefficients of the
noisy image with observation window units:

𝑞 (𝑖, 𝑗) = 𝜎̂2𝑦(𝑖,𝑗) = 1𝑀 ∑𝑦2 (𝑖, 𝑗) , (23)

where 𝑦(𝑖, 𝑗) is the wavelet coefficient;𝑀 = 𝑚 ∙ 𝑛.
(2) Calculate the variance of thewavelet coefficients of the

original image without noise:

𝜎̂2𝑥(𝑖,𝑗) = max (𝜎̂2𝑦(𝑖,𝑗) − 𝜎2Noise, 0) , (24)

where 𝜎Noise is the noise variance and can be calculated by
(19).

(3) Process wavelet coefficients as follows:

𝑥̂ (𝑖, 𝑗) = 𝜎̂2𝑥(𝑖,𝑗)
(𝜎̂2𝑥(𝑖,𝑗) + 𝜎2Noise) ∙ 𝑦 (𝑖, 𝑗) . (25)

In the following, we will improve wavelet domain wiener
filtering through adding threshold processing before step (3).
The steps added are as follows:

(1) Select the appropriate wavelet “coif3” to decompose
the noisy image and the decomposition level is𝐾 = 4.

(2) Estimate the noise variance 𝜎2Noise from the high
frequency subband HH1.

(3) Calculate parameter 𝑐 of each scale in order to further
improve the adaptability of threshold.

𝑐 = √𝐿𝑘𝐿 log(𝐿𝑘𝐾 ), (26)

where 𝐿𝑘 is the length of 𝑘th subband, 𝐿 is the length of
the noisy image, 𝑘 = 1, 2, . . . , 𝐾, and 𝐾 is the number of
decomposition levels. It is obvious that the parameter 𝑐 will
change adaptively with 𝐾.

(4) The wavelet coefficients are processed as follows:

𝑦 (𝑖, 𝑗) = {{{
𝑦 (𝑖, 𝑗) 𝑞 (𝑖, 𝑗) ≥ 𝑐𝜎2Noise
0 𝑞 (𝑖, 𝑗) < 𝑐𝜎2Noise. (27)

Parameter 𝑐 in (26) is related to SNR (signal to noise
ratio). The bigger SNR becomes, the bigger parameter 𝑐
becomes, the more details are retained, and the clearer the
image becomes. In addition, the improved wavelet domain
wiener filtering implements the minimum variance estima-
tion.What ismore, this treatment is consistent with the visual
characteristics of human and the denoised image has better
visual effects.

5. Denoising Method Proposed in This Paper

It is notable that many problems still exist in the threshold
denoising. Worst of all is the fact that too much detail is
eliminated, so that the image quality is severely reduced; even
pseudo-Gibbs phenomenon is produced.

Combing improved Bayesian threshold with wavelet
domain wiener filtering, a new method based on adaptive
multiscale morphological edge detection is proposed to solve
the threshold denoising problems above. Steps are as follows.

Step 1. Use the wavelet base “sym3” to decompose the noisy
image into four layers.

Step 2. For each group of wavelet coefficients, apply adaptive
multiscale morphological edge detection method to detect
wavelet coefficients belonging to the edge of the image.

Step 3. Deal with wavelet coefficients belonging to the edge
through improved wavelet domain wiener filtering, and
window size of 5 × 5 is chosen for each group.
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Step 4. Deal with wavelet coefficients not belonging to the
edge with improved threshold denoising.

Step 5. Inversely process wavelet coefficients through the
wavelet base “sym3” for each group to get the final denoised
image.

The proposed method in this paper has the following
characteristics. Firstly, this method based on adaptive mul-
tiscale morphological edge detection can not only detect
edge details but also protect and highlight them. So this
method has higher PSNR and SSIM. Secondly, the traditional
Bayesian threshold is improved by adding adaptive coefficient𝜂 = 1/log(𝐾 + 1), which can change with the number of
decomposition levels𝐾 adaptively. To be more precise, when
the decomposition level 𝐾 increases, the threshold becomes
smaller.This feature is in line with distribution characteristics
of the noise decomposed by wavelet. By this way, the noise
is removed to the maximum extent possible, but the wavelet
coefficients of the original image are not affected. Finally,
wavelet domain wiener filtering is improved by adding
parameter 𝑐 in order to further enhance the adaptability of
threshold, which can retain edge features and increase clarity
of the image. Thus, the proposed method has better visual
effects and can provide better visual performance.

6. Image Denoising Evaluation

At present, there are two ways to evaluate the quality of
the denoised image: subjective evaluation and objective
evaluation. Subjective evaluation is to evaluate the denoising
effect from the qualitative point of view. On the contrary,
objective evaluation is to evaluate the denoising effect from
the quantitative point of view. However, there are no uniform
evaluation criteria to evaluate the denoising effect until now.
PSNR and SSIM are adopted to evaluate the results of
denoised image in [29, 30].

Assuming that 𝑓(𝑖, 𝑗) is the gray value of the original
image without noise and 𝐷(𝑖, 𝑗) is the gray value of the
denoised image, the size of the image is𝑀×𝑁.

PSNR is defined as follows:

MSE = 1𝑀 ∙ 𝑁
𝑀∑
𝑖=1

𝑁∑
𝑗=1

[𝑓 (𝑖, 𝑗) − 𝐷 (𝑖, 𝑗)]

PSNR = 10 log10 [ 2552MSE
] .

(28)

The smaller MSE value is, the bigger PSNR value is. It
means that the difference between the original image and the
denoised image is small, and the denoising effect is better.

SSIM is a kind of image quality evaluation index based on
structural similarity. Assuming that the human eye is suitable
for extracting the structural information from the perspective
of the visual field, we have

SSIM = (2𝑢1𝑢2 + 𝑐1)(𝑢21 + 𝑢22 + 𝑐1)
(2𝜎12 + 𝑐2)(𝜎21 + 𝜎22 + 𝑐2) , (29)

where 𝑢1 and 𝑢2 are the pixel means before and after the
treatment, respectively. 𝜎𝑘 is the pixel variance, 𝜎12 is the pixel

covariance, and 𝑐𝑘 is constant: 𝑘 = 1, 2. In this paper, we take𝑐1 = (0.01 × 255)2 and 𝑐2 = (0.03 × 255)2. The range of
SSIM is [0, 1] and its maximum value is 1. If SSIM is closer
to 1, it indicates that the denoised image is more similar to
the original image. This is to say that more edge details of the
original image can be retained.

7. Simulation Experiments

In this section, three groups of experiments are provided to
illustrate the effectiveness of the proposed method in this
paper.

Figure 1 is an example of remote sensing image. The
denoised image is Aerial image with the size of 512 × 512
pixels.We compare the denoising results with articles [23–28]
from the qualitative and quantitative aspects. The denoised
images are shown in Figure 1 (the noise standard deviation𝜎𝑛 = 30), and the comparison results of denoised index PSNR
and SSIM are shown in Table 1.

In Figure 1, the image processed by [23, 24, 27] or [28]
is more blurred because it loses much edge information.
The image processed by [25] or [26] includes much noise
which destroys the clarity of the image. On the contrary, the
denoising effect of the new method proposed in this paper
is more significant and can preserve more edge information
than the others.

From Table 1, we find that the new method has better
performance than the others for Aerial image. The results
of experiments show the high effectiveness of the proposed
method in this paper for remote sensing image, no matter
from the subjective or objective aspects.

Figure 2 is an example of Lena, Barbara, and Boat image
with the size of 512 × 512 pixels. We compare denoising
results with articles [23–28] from qualitative and quantitative
aspects.The denoised images are shown in Figure 2 (the noise
standard deviation 𝜎𝑛 = 30), and the comparison results of
denoised index PSNR and SSIM are shown in Table 2.

In Figure 2, the new method highlights the features of
the edge and retains most of the edge information. So
the denoised edge details are more obvious and closer to
the original image. Furthermore, we magnify the details
to show the subtle differences between different denoised
images. Because image denoising method based on adaptive
multiscalemorphological edge detection can detect the image
edges with different direction structuring elements and each
structuring element can detect an image edge, the ideal image
edgewith detailed character in Figure 2(k) can be obtained by
combining different orientations.

In addition, from Table 2, we find that PSNR and SSIM
of the reconstructed image obtained by the new method are
highest. It is shown that the newmethod has strong denoising
ability no matter in the low SNR or in the high SNR. In other
words, the denoised images processed by the new method
have higher peak signal to noise ratio and mean structural
similarity.

Figure 3 is an example of infrared image. The denoised
image is infrared image of Cassiopeia A with the size of 640×480 pixels. We compare denoising results with articles [23–
28] from qualitative and quantitative aspects. The denoised
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(a) The original image (b) The noisy image

(c) Article [23] (d) Article [24]

(e) Article [25] (f) Article [26]

(g) Article [27] (h) Article [28]

(i) The new method

Figure 1: Comparison of different image denoising methods for Aerial image.
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(a) The original image (b) The noisy image

(c) Article [23] (d) Article [24]

(e) Article [25] (f) Article [26]

(g) Article [27] (h) Article [28]

(i) The new method

(j) Magnified images cropped
from (h)

(k) Magnified images cropped
from (i)

Figure 2: Comparison of denoising methods for image Barbara.
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(a) The original image (b) The noisy image

(c) Article [23] (d) Article [24]

(e) Article [25] (f) Article [26]

(g) Article [27] (h) Article [28]

(i) The new method

(j) Magnified images cropped
from (h)

(k) Magnified images cropped
from (i)

Figure 3: Comparison of different infrared image denoising methods for Cassiopeia A.
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Table 1: Comparison of different denoising methods on PSNR and SSIM for Aerial image.

Denoising method 𝜎𝑛 = 10 𝜎𝑛 = 20 𝜎𝑛 = 30
PSNR SSIM PSNR SSIM PSNR SSIM

Noisy image 28.1428 0.6488 22.3143 0.4013 18.5941 0.2612
Article [23] 31.5413 0.8224 26.8412 0.7133 24.8298 0.6328
Article [24] 31.6817 0.8341 27.1353 0.7262 24.9526 0.6581
Article [25] 31.8256 0.8536 27.3763 0.7486 25.1833 0.6739
Article [26] 31.1601 0.8110 27.0601 0.7021 24.1912 0.6525
Article [27] 31.6325 0.8882 27.8442 0.7858 25.6135 0.7083
Article [28] 31.8812 0.8991 27.9914 0.8164 25.6002 0.7213
The new method 32.0131 0.9189 28.0675 0.8343 25.9070 0.7553

Table 2: Comparison of different denoising methods on PSNR and SSIM for images.

Denoising method Lena Barbara Boat𝜎𝑛 = 10 𝜎𝑛 = 20 𝜎𝑛 = 30 𝜎𝑛 = 10 𝜎𝑛 = 20 𝜎𝑛 = 30 𝜎𝑛 = 10 𝜎𝑛 = 20 𝜎𝑛 = 30
Noisy image 28.18 22.15 18.67 28.12 22.12 18.66 28.14 22.16 18.62

0.5646 0.3398 0.2333 0.7036 0.4945 0.3673 0.6072 0.3992 0.2888

Article [23] 34.53 31.56 29.88 32.81 28.68 26.79 32.93 29.75 27.68
0.8894 0.8282 0.7683 0.8846 0.8318 0.7632 0.8498 0.7746 0.7226

Article [24] 34.27 31.07 28.96 31.96 28.16 26.11 32.37 29.11 27.31
0.8798 0.8175 0.7618 0.8503 0.7938 0.7323 0.8324 0.7763 0.7105

Article [25] 33.37 29.63 27.35 32.76 28.29 26.57 32.03 28.02 26.29
0.8878 0.8013 0.7856 0.8996 0.8489 0.7811 0.8768 0.7863 0.6802

Article [26] 34.98 31.73 29.62 33.01 29.18 27.01 33.11 29.77 27.74
0.9035 0.8494 0.8066 0.9161 0.8528 0.7837 0.8573 0.7953 0.7106

Article [27] 33.98 30.86 28.68 31.76 27.37 26.31 32.58 29.32 27.72
0.8469 0.7484 0.6586 0.8678 0.7723 0.7426 0.8302 0.7563 0.6752

Article [28] 34.81 31.28 30.03 31.62 29.02 26.81 32.66 29.18 28.12
0.8990 0.8545 0.8203 0.9074 0.8331 0.7780 0.8387 0.7619 0.7129

The new method 35.21 31.76 30.08 33.02 29.19 27.21 33.48 30.18 28.34
0.9070 0.8558 0.8212 0.9218 0.8532 0.7921 0.8788 0.7976 0.7408

images are shown in Figure 3 (the noise standard deviation𝜎𝑛 = 30), and the comparison results of denoised index PSNR
and SSIM are shown in Table 3.

In Figure 3, the image processed by [23, 24] or [27] ismore
blurred because it loses much edge information. The image
processed by [25] or [26] includesmuch noise which destroys
the clarity of the image. The denoising effect of [28] is more
close to our proposed method and can preserve more edge
information than the others. A Further comparison between
Figures 3(j) and 3(k) illustrates that the denoised edge details
are more obvious using the proposed method in this paper.

From Table 3, we find that the new method has better
performance than the others for the infrared image.

The proposed method in this paper is dependent on
parameter 𝛼 in (13). Linear parameter 𝛼 is the weighting
value of 𝐹dec(𝑥, 𝑦) in (12) to adjust edge detection operator,
whose sensitivity is decided by 𝐹dec(𝑥, 𝑦). When 𝛼 becomes
bigger, more edge information can be detected, but antinoise
performance will drop. Through repeated experiments, the
denoising effect is ideal when 𝛼 is between 0.3 and 0.6. In
this paper, we set 𝛼 = 0.5. Figure 4 shows the PSNR of Aerial
image, Barbara, and Cassiopeia A for parameter 𝛼 ∈ [0, 1].

At last, we note down the computational cost of different
denoising methods. We test the algorithms to process one512 × 512 image on a Windows machine with Intel(R)
Celeron G550 @ 2.60GHz CPU and 4.00GBRAM. Results
are illustrated in Table 4.

In [27], most of the runtime latency was caused by the
reading of coefficients back from GPU’s framebuffer and the
sorting operation on CPU, and the runtime of these two tasks
dramatically increases along with the image size. In [26],
since the BRISQUE approach requires a training procedure to
calibrate the regressormodule, the computational complexity
is high. Although the method in [28] dividing the image into
three segments is more close to our proposed method, from
the above comparisons, it can be concluded that our proposed
method allows an efficient denoising algorithmwith relatively
low complexity.

The computation times have been averaged over twenty
runs.

8. Conclusion

In this paper, we propose a new method to remove Gaussian
noise from digital images. Based on adaptive multiscale
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Table 3: Comparison of different denoising methods on PSNR and SSIM for Cassiopeia A.

Denoising method 𝜎𝑛 = 10 𝜎𝑛 = 20 𝜎𝑛 = 30
PSNR SSIM PSNR SSIM PSNR SSIM

Noisy image 28.1328 0.6297 22.1122 0.3594 18.5904 0.2291
Article [23] 31.9312 0.8286 28.1201 0.8035 27.9811 0.6882
Article [24] 31.1877 0.8415 28.1838 0.7762 26.8825 0.6673
Article [25] 30.0256 0.7866 27.7673 0.7544 25.7336 0.6694
Article [26] 32.3656 0.8810 30.1614 0.8201 28.8912 0.7325
Article [27] 30.5267 0.8092 28.4142 0.7785 26.3635 0.6738
Article [28] 32.5267 0.8819 30.2484 0.8234 28.6222 0.7363
The new method 33.9213 0.8989 31.0765 0.8266 29.0733 0.7458

Table 4: Comparison of different denoising methods on computational burdens.

Method Article [23] Article [24] Article [25] Article [26] Article [27] Article [28] The new method
Unit of time (s) 88 1.7782 1.5506 1.3011 1.1112 0.9382 0.9532
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Aerial image
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Figure 4:The PSNR of Aerial image, Barbara, and Cassiopeia A for
parameter 𝛼 ∈ [0, 1].

morphological edge detection combining improved Bayesian
threshold and wiener filtering, the method proposed in this
paper not only can remove the noise from remote sensing
image but also can remove the noise from general image. It
is able to retain the edge details of the image and highlight
features of the edge. The simulation experiments show that
the denoised images have higher peak signal to noise ratio
and mean structural similarity and are of great application
value.
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