142 research outputs found

    Mechanical load stimulates expression of novel genesin vivoandin vitroin avian flexor tendon cells

    Get PDF
    OBJECTIVE: Our experiments were designed to test the hypothesis that tendon cells might respond differently to applied strain in vitro than in vivo. DESIGN: We tested cells in whole tendons from exercised chickens and from isolated surface (TSC) and internal tendon (TIF) in vitro that were subjected to mechanical strain. We hypothesized that tendon cells differentially express genes in response to mechanical loading in vivo and in vitro. METHODS: We utilized an in-vivo exercise model in which chickens were run on a treadmill in an acute loading regime for 1 h 45 min with the balance of time at rest to 6 h total time. Gene expression was analyzed by a differential display technique. In addition, isolated avian flexor digitorum profundus TSC and TIF cells were subjected to cyclic stretching at 1 Hz, 5% average elongation for 6 h, +/- PDGF-BB, IGF-I, TGF-beta 1, PTH, estrogen, PGE2, or no drug and/or no load. mRNA was then collected and samples were subjected to differential display analysis. CONCLUSIONS: Load with or without growth factor and hormone treatments induced expression of novel genes as well as some known genes that were novel to tendon cells. We conclude that the study of gene expression in mechanically loaded cells in vivo and in vitro will lead to the discovery of novel and important marker proteins that may yield clues to positive and negative cell strain responses that are protective under one set of conditions and destructive under another

    From 2D leg kinematics to 3D full-body biomechanics-the past, present and future of scientific analysis of maximal instep kick in soccer

    Get PDF
    Biomechanics investigation on soccer kicking has a relatively long history, yet the body of knowledge is still small. This paper reviews articles published from 1960s to 2011, summarizing relevant findings, research trends and method development. It also discusses challenges faced by the field. The main aim of the paper is to promote soccer kicking studies through discussions on problem solving in the past, method development in the present, and possible research directions for the future

    Diet-related changes in mechanical properties of rat vertebrae

    No full text
    corecore