3 research outputs found

    Gaia Data Release 2: Properties and validation of the radial velocities

    Get PDF
    Context. For Gaia DR2, 280 million spectra collected by the Radial Velocity Spectrometer instrument on board Gaia were processed, and median radial velocities were derived for 9.8 million sources brighter than GRVS = 12 mag. Aims. This paper describes the validation and properties of the median radial velocities published in Gaia DR2. Methods. Quality tests and filters were applied to select those of the 9.8 million radial velocities that have the quality to be published in Gaia DR2. The accuracy of the selected sample was assessed with respect to ground-based catalogues. Its precision was estimated using both ground-based catalogues and the distribution of the Gaia radial velocity uncertainties. Results. Gaia DR2 contains median radial velocities for 7 224 631 stars, with Teff in the range [3550, 6900] K, which successfully passed the quality tests. The published median radial velocities provide a full-sky coverage and are complete with respect to the astrometric data to within 77.2% (for G larger than or equal to 12.5 mag). The median radial velocity residuals with respect to the ground-based surveys vary from one catalogue to another, but do not exceed a few 100 m s-1. In addition, the Gaia radial velocities show a positive trend as a function of magnitude, which starts around GRVS - 9 mag and reaches about +500 m s-1 at GRVS = 11.75 mag. The origin of the trend is under investigation, with the aim to correct for it in Gaia DR3. The overall precision, estimated from the median of the Gaia radial velocity uncertainties, is 1.05 km s-1. The radial velocity precision is a function of many parameters, in particular, the magnitude and effective temperature. For bright stars, GRVS E [4, 8] mag, the precision, estimated using the full dataset, is in the range 220-350 m s-1, which is about three to five times more precise than the pre-launch specification of 1 km s-1. At the faint end, GRVS = 11.75 mag, the precisions for Teff = 5000 and 6500 K are 1.4 and 3.7 km s-1, respectively.Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Most of the authors are current or past members of the ESA Gaia mission team and of the Gaia DPAC and their work has been supported by the French Centre National de la Recherche Scientifique (CNRS), the Centre National d’Etudes Spatiales (CNES), the Agence Nationale de la Recherche, the Région Aquitaine, the Université de Bordeaux, the Utinam Institute of the Université de Franche-Comté, and the Institut des Sciences de l’ Univers (INSU); the Science and Technology Facilities Council and the United Kingdom Space Agency; the Belgian Federal Science Policy Office (BELSPO) through various Programme de Développement d’Expériences Scientifiques (PRODEX) grants; the German Aerospace Agency (Deutsches Zentrum fur Luft- und Raumfahrt e.V., DLR); the Algerian Centre de Recherche en Astronomie, Astrophysique et Géophysique of Bouzareah Observatory; the Swiss State Secretariat for Education, Research, and Innovation through the ESA PRODEX programme, the Mesures d’Accompagnement, the Swiss Activités Nationales Complémentaires, and the Swiss National Science Foundation; the Slovenian Research Agency (research core funding No. P1-0188

    TOI-216b and TOI-216 c: Two Warm, Large Exoplanets in or Slightly Wide of the 2:1 Orbital Resonance

    Get PDF
    Warm, large exoplanets with 10-100 day orbital periods pose a major challenge to our understanding of how planetary systems form and evolve. Although high eccentricity tidal migration has been invoked to explain their proximity to their host stars, a handful reside in or near orbital resonance with nearby planets, suggesting a gentler history of in situ formation or disk migration. Here we confirm and characterize a pair of warm, large exoplanets discovered by the TESS Mission orbiting K-dwarf TOI-216. Our analysis includes additional transits and transit exclusion windows observed via ground-based follow-up. We find two families of solutions, one corresponding to a sub-Saturn-mass planet accompanied by a Neptune-mass planet and the other to a Jupiter in resonance with a sub-Saturn-mass planet. We prefer the second solution based on the orbital period ratio, the planet radii, the lower free eccentricities, and libration of the 2:1 resonant argument, but cannot rule out the first. The free eccentricities and mutual inclination are compatible with stirring by other, undetected planets in the system, particularly for the second solution. We discuss prospects for better constraints on the planets' properties and orbits through follow-up, including transits observed from the ground.We gratefully acknowledge support by NASA XRP NNX16AB50G and NASA TESS GO 80NSSC18K1695. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. T.D. acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. K.H. acknowledges support from STFC grant ST/R000824/1. M.Ž. acknowledges funding from the Australian Research Council (grant DP170102233). This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958

    The GALAH survey : scientific motivation

    No full text
    The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ∼ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ∼ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES
    corecore