32 research outputs found

    Study on the influence of float parameters on the efficiency of oscillating float wave power generation

    No full text
    The world’s environmental pollution is more and more serious, and the human society for the energy demand is more and more large, so o the research of clean new energy is very necessary. In this paper, flow-3D software is used to simulate and study the motion state, velocity, kinetic energy, wave force and amplitude of cone and cylinder floats under different masses with the same wave height, so as to obtain the influence of mass on wave absorption efficiency and output power of these two kinds of floats. The results show that :(1) when the wave height is 0.25m, the wave energy absorption efficiency of the cylindrical and conical float increases first and then decreases with the increase of mass. The absorption efficiency of the 6kg cone float is the best, which is 27.77%. (2) With the increase of mass, the output work of the conical float firstly increases and then decreases, and reaches its maximum value at 6kg, which is 1.27w

    Experimental Investigation of Air Entrainment in Free-Falling Particle Plumes

    No full text
    Powders and granulated solids are widely used in industrial bulk solids storage, handling and transportation systems. Such bulk materials handling operations frequently involve a falling stream of material. During such a process, the surrounding air is induced to flow with the falling particle stream forming a particle-driven plume. Herein, experimental research results are reported on this fundamental problem, focussing in particular on the velocity profile of air entrained by the free-falling particles. This investigation shows that the velocity profile of the induced air can be modelled as a Gaussian distribution. The radius of the particle plume is found to increase linearly with increasing drop height and it also increases with increasing bulk solid mass flow rate. Comparisons are made with other entrainment flows, such as jets and plumes, and it was found that air entrainment and hence the angle of spread of the particle-driven plumes was much less than for the other entrainment flows. The angles of spread of the particle-driven plumes were found to be in the range 1.3 as compared to qs H 5.7 for miscible plumes arising from sources of heat, for example. In addition, the centreline velocity of the induced air in the particle plumes was found to increase significantly with increasing drop height. Results from high-speed digital video records show that the bulk material does not dilate in a uniform manner as it falls, and a series of distinct particle clouds form in the core of the particle-driven plume. These clouds eventually disperse over a sufficiently large drop height

    Soil Microbial Community Driven by Soil Moisture and Nitrogen in Milk Vetch (<i>Astragalus sinicus</i> L.)–Rapeseed (<i>Brassica napus</i> L.) Intercropping

    No full text
    The soil microbial community is not only driven by plant composition but is also disturbed by the soil environment. Intercropping affects the soil microenvironment through plant interaction, but the understanding of the relationship between soil microbial community and environment in intercropping is still weak. In this study, milk vetch intercropping with rapeseed was used to explore the interaction between soil microorganisms and environment. The results showed that the soil moisture content of intercropping was higher than that of monoculture during the reproductive period of rapeseed growth (flowering and podding stages). The contents of soil total nitrogen and alkali-hydrolyzable nitrogen in intercropping were higher than those in monoculture. The dominant soil microbial communities in intercropping were the same as in monoculture and included Chloroflexi, Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Gemmatimonates and Bacteroidetes. However, intercropping increased the Shannon index and decreased the Simpson’s index of the soil microbial community. The changes in the soil microbial community were mainly related to soil temperature, moisture, pH, total nitrogen, alkali-hydrolyzable nitrogen and available potassium. Moreover, there was a negative correlation between soil moisture and microorganisms and a positive correlation between nitrogen and microorganisms. Thus, milk vetch–rapeseed intercropping could not only improve soil nitrogen content, but also change soil microbial community diversity. In dryland red soil, the effect of milk vetch–rapeseed intercropping on soil moisture and nitrogen was the key factor contributing to the changes in the soil microbial community. When planting rapeseed in the future, we could consider the application of intercropping with milk vetch, which can contribute to regulating the soil nitrogen pool and improving microbial diversity

    Multiobjective Optimization of Injection Molding Process Parameters for the Precision Manufacturing of Plastic Optical Lens

    No full text
    Injection molding process parameters (IMPP) have a significant effect on the optical performance and surface waviness of precision plastic optical lens. This paper presents a set of procedures for the optimization of IMPP, with haze ratio (HR) reflecting the optical performance and peak-to-valley 20 (PV20) reflecting the surface waviness as the optimization objectives. First, the orthogonal experiment was carried out with the Taguchi method, and the results were analyzed by ANOVA to screen out the IMPP having a significant effect on the objectives. Then, the 34 full-factor experiment was conducted on the key IMPP, and the experimental results were used as the training and testing samples. The BPNN algorithm and the M-SVR algorithm were applied to establish the mapping relationships between the IMPP and objectives. Finally, the multiple-objective optimization was performed by applying the nondominated sorting genetic algorithm (NSGA-II), with the built M-SVR models as the fitness function of the objectives, to obtain a Pareto-optimal set, which improved the quality of plastic optical lens comprehensively. Through the experimental verification on the optimization results, the mean prediction error (MPE) of HR and PV20 is 7.16% and 9.78%, respectively, indicating that the optimization method has high accuracy

    Quantitative Measurement of Melittin in Asian Honeybee Venom Using a New Method Including UPLC-QqTOF-MS

    No full text
    Asian honeybee venom is widely used in traditional oriental medicine. Melittin is the main component of Asian honeybee venom. In the present study, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) method was used for accurate qualitative and quantitative analyses of melittin in Asian honeybee venom. The results showed that the dynamic linear range of melittin was from 0.094 to 20 &mu;g/mL, and the limit of quantification was 0.3125 &mu;g/mL. The spiking recovery of melittin in honeybee venom ranged from 84.88% to 93.05%. Eighteen Asian honeybee venom samples in eighteen batches were collected from two different zones of China, and their melittin contents were measured. The contents of melittin in Asian honeybee venom samples was 33.9&ndash;46.23% of dry weight. This method proved a useful tool for the rapid evaluation of the authenticity and quality of Asian honeybee venom in terms of the melittin contents, and will contribute to a broader understanding of Asian honeybee venom

    Molecular simulation of the displacement of shale gas in quartz slit by flue gas

    No full text
    To study the efficiency of flue gas sequestration with enhanced shale gas recovery in quartz slit, Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) simulations were adopted to investigate the influence of burial depth, formation water content and the injection ratio of flue gas on the recovery efficiency of shale gas (CH4) in quartz slit by flue gas (CO2/N2). The density distribution, loading, adsorption heat and interaction energy of each component were systematically analyzed to reveal their adsorption mechanisms and the recovery efficiency of CH4. It indicates that the loadings of mixed CH4 and N2 (ΓCH4 and ΓN2) exhibit negative correlation with formation water content. With the increasing burial depth, both ΓCH4 and ΓN2 increase at first and then tend to be constant when the burial depth is over 2 400 m. The maximum loading of CO2 (ΓCO2) occurs at the burial depth of 2 400 m. There is a positive correlation of ΓCO2 with formation water content when the burial depth is below 2 400 m, and a negative correlation when the burial depth is over 2 400 m. The recovery efficiency of CH4 (η) reaches the maximum point at the burial depth of 400-600 m, which increases with the increasing mole fraction of CO2 in flue gas, showing that CO2 in flue gas can promote the displacement of CH4 significantly
    corecore