34 research outputs found

    Variable Neighborhood Search for Parallel Machines Scheduling Problem with Step Deteriorating Jobs

    Get PDF
    In many real scheduling environments, a job processed later needs longer time than the same job when it starts earlier. This phenomenon is known as scheduling with deteriorating jobs to many industrial applications. In this paper, we study a scheduling problem of minimizing the total completion time on identical parallel machines where the processing time of a job is a step function of its starting time and a deteriorating date that is individual to all jobs. Firstly, a mixed integer programming model is presented for the problem. And then, a modified weight-combination search algorithm and a variable neighborhood search are employed to yield optimal or near-optimal schedule. To evaluate the performance of the proposed algorithms, computational experiments are performed on randomly generated test instances. Finally, computational results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time even for large-sized problems

    Synthetic Data (Almost) from Scratch: Generalized Instruction Tuning for Language Models

    Full text link
    We introduce Generalized Instruction Tuning (called GLAN), a general and scalable method for instruction tuning of Large Language Models (LLMs). Unlike prior work that relies on seed examples or existing datasets to construct instruction tuning data, GLAN exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input and generates large-scale synthetic instruction data across all disciplines. Specifically, inspired by the systematic structure in human education system, we build the taxonomy by decomposing human knowledge and capabilities to various fields, sub-fields and ultimately, distinct disciplines semi-automatically, facilitated by LLMs. Subsequently, we generate a comprehensive list of subjects for every discipline and proceed to design a syllabus tailored to each subject, again utilizing LLMs. With the fine-grained key concepts detailed in every class session of the syllabus, we are able to generate diverse instructions with a broad coverage across the entire spectrum of human knowledge and skills. Extensive experiments on large language models (e.g., Mistral) demonstrate that GLAN excels in multiple dimensions from mathematical reasoning, coding, academic exams, logical reasoning to general instruction following without using task-specific training data of these tasks. In addition, GLAN allows for easy customization and new fields or skills can be added by simply incorporating a new node into our taxonomy.Comment: Work in progres

    Decreased replication origin activity in temporal transition regions

    Get PDF
    Experimental attempts to activate replication origins within the temporal transition region in the IgH locus in mouse embryonic stem cells were not successful, and thus, why and how they become activated in B cells remains unclear

    Teaching Assembly Line Balancing Problem by Using Lingo Software

    No full text

    An Ant Colony Algorithm for Two-Sided Assembly Line Balancing Problem Type-II

    Full text link

    The Benefits Impulse Mode for Logistics Modernization Generated By High Speed Maglev Train

    No full text

    Artificial Intelligence-Assisted Breeding for Plant Disease Resistance

    No full text
    Harnessing state-of-the-art technologies to improve disease resistance is a critical objective in modern plant breeding. Artificial intelligence (AI), particularly deep learning and big model (large language model and large multi-modal model), has emerged as a transformative tool to enhance disease detection and omics prediction in plant science. This paper provides a comprehensive review of AI-driven advancements in plant disease detection, highlighting convolutional neural networks and their linked methods and technologies through bibliometric analysis from recent research. We further discuss the groundbreaking potential of large language models and multi-modal models in interpreting complex disease patterns via heterogeneous data. Additionally, we summarize how AI accelerates genomic and phenomic selection by enabling high-throughput analysis of resistance-associated traits, and explore AI’s role in harmonizing multi-omics data to predict plant disease-resistant phenotypes. Finally, we propose some challenges and future directions in terms of data, model, and privacy facets. We also provide our perspectives on integrating federated learning with a large language model for plant disease detection and resistance prediction. This review provides a comprehensive guide for integrating AI into plant breeding programs, facilitating the translation of computational advances into disease-resistant crop breeding

    A Novel Ant Colony Optimization Algorithm for U-Shaped Line Balancing Problem

    No full text
    corecore