191 research outputs found

    Binary asteroid dissociation and accretion around white dwarfs

    Full text link
    About 25-50% of white dwarfs (WDs) show metal lines in their spectra. Among the widely accepted explanations for this effect is that the these WDs are accreting asteroids that are perhaps flung onto the WDs by a planet via resonance, for instance. A number of theoretical works have looked into the accretion of asteroids onto WDs and obtained a fair agreement with the observed accretion rate. However, it is solely a very recent study (referenced in this work) that has taken asteroid binarity into consideration, examining the scattering between an asteroid binary and planets and showing that a dissociation and ejection of the former might result and the effect on WD metal accretion is likely to be weak. Here, we investigate the close encounter between an asteroid binary and the central WD and consider how the binary's dissociation may affect the WD's accretion. We find that depending on the orbital and physical properties, the components may acquire orbits that are significantly different (even on the order of unity) from that of the parent binary. We assumed all the inner main belt asteroids are binaries and we studied their accretion onto the solar WD under the perturbation of the giant planets. We find that compared to the case without binaries, the components' accretion may be postponed (or put forward) by millions of years or more, as the objects may be taken out of (or driven deeper into) the resonance due to the sudden orbital change upon dissociation. However, the overall influence of binary dissociation on the accretion rate is not very significant.Comment: 10 pages, 9 figure

    MAC: A unified framework boosting low resource automatic speech recognition

    Full text link
    We propose a unified framework for low resource automatic speech recognition tasks named meta audio concatenation (MAC). It is easy to implement and can be carried out in extremely low resource environments. Mathematically, we give a clear description of MAC framework from the perspective of bayesian sampling. In this framework, we leverage a novel concatenative synthesis text-to-speech system to boost the low resource ASR task. By the concatenative synthesis text-to-speech system, we can integrate language pronunciation rules and adjust the TTS process. Furthermore, we propose a broad notion of meta audio set to meet the modeling needs of different languages and different scenes when using the system. Extensive experiments have demonstrated the great effectiveness of MAC on low resource ASR tasks. For CTC greedy search, CTC prefix, attention, and attention rescoring decode mode in Cantonese ASR task, Taiwanese ASR task, and Japanese ASR task the MAC method can reduce the CER by more than 15\%. Furthermore, in the ASR task, MAC beats wav2vec2 (with fine-tuning) on common voice datasets of Cantonese and gets really competitive results on common voice datasets of Taiwanese and Japanese. Among them, it is worth mentioning that we achieve a \textbf{10.9\%} character error rate (CER) on the common voice Cantonese ASR task, bringing about \textbf{30\%} relative improvement compared to the wav2vec2 (with fine-tuning)

    A New Anthracene Derivative from Marine Streptomyces sp. W007 Exhibiting Highly and Selectively Cytotoxic Activities

    Get PDF
    A new anthracene derivative, 3-hydroxy-1-keto-3-methyl-8-methoxy-1,2,3, 4-tetrahydro-benz[α]anthracene, was isolated from the marine strain Streptomyces sp. W007, and its structure was established by spectroscopic analysis including mass spectra, 1D- and 2D-NMR (1H–1H COSY, HMBC, HSQC and NOESY) experiments. 3-hydroxy-1-keto-3-methyl-8-methoxy-1,2,3,4-tetrahydro-benz[α]anthracene showed cytotoxicity against human lung adenocarcinoma cell line A549

    Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation.

    Get PDF
    Advances in genomic profiling present new challenges of explaining how changes in DNA and RNA are translated into proteins linking genotype to phenotype. Here we compare the genome-scale proteomic and transcriptomic changes in human primary haematopoietic stem/progenitor cells and erythroid progenitors, and uncover pathways related to mitochondrial biogenesis enhanced through post-transcriptional regulation. Mitochondrial factors including TFAM and PHB2 are selectively regulated through protein translation during erythroid specification. Depletion of TFAM in erythroid cells alters intracellular metabolism, leading to elevated histone acetylation, deregulated gene expression, and defective mitochondria and erythropoiesis. Mechanistically, mTORC1 signalling is enhanced to promote translation of mitochondria-associated transcripts through TOP-like motifs. Genetic and pharmacological perturbation of mitochondria or mTORC1 specifically impairs erythropoiesis in vitro and in vivo. Our studies support a mechanism for post-transcriptional control of erythroid mitochondria and may have direct relevance to haematologic defects associated with mitochondrial diseases and ageing

    Significance of Photosynthetic Characters in the Evolution of Asian Gnetum (Gnetales)

    Get PDF
    Gnetum is a genus in the Gnetales that has a unique but ambiguous placement within seed plant phylogeny. Previous studies have shown that Gnetum has lower values of photosynthetic characters than those of other seed plants, but few Gnetum species have been studied, and those that have been studied are restricted to narrow taxonomic and geographic ranges. In addition, the mechanism underlying the lower values of photosynthetic characters in Gnetum remains poorly understood. Here, we investigated the photosynthetic characters of a Chinese lianoid species, i.e., Gnetum parvifolium, and co-occurring woody angiosperms growing in the wild, as well as seedlings of five Chinese Gnetum species cultivated in a greenhouse. The five Gnetum species had considerably lower values for photosynthesis parameters (net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatal conductance) than those of other seed plant representatives. Interrelated analyses revealed that the low photosynthetic capacity may be an intrinsic property of Gnetum, and may be associated with its evolutionary history. Comparison of the chloroplast genomes (cpDNAs) of Gnetum with those of other seed plant representatives revealed that 17 coding genes are absent from the cpDNAs of all species of Gnetum. This lack of multiple functional genes from the cpDNAs probably leads to the low photosynthetic rates of Gnetum. Our results provide a new perspective on the evolutionary history of the Gnetales, and on the ecophysiological and genomic attributes of tropical biomes in general. These results could also be useful for the breeding and cultivation of Gnetum

    A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Get PDF
    A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized

    Metabolic profiling reveals key metabolites regulating adventitious root formation in ancient Platycladus orientalis cuttings

    Get PDF
    Platycladus orientalis, a common horticultural tree species, has an extremely long life span and forms a graceful canopy. Its branches, leaves, and cones have been used in traditional Chinese medicine. However, difficulty in rooting is the main limiting factor for the conservation of germplasm resources. This study shows that the rooting rates and root numbers of cuttings were significantly reduced in ancient P. orientalis donors compared to 5-year-old P. orientalis donors. The contents of differentially accumulated metabolites (DAMs) in phenylpropanoid (caffeic acid and coniferyl alcohol) and flavonoid biosynthesis (cinnamoyl-CoA and isoliquiritigenin) pathways increased significantly in cuttings propagated from ancient P. orientalis donors compared to 5-year-old P. orientalis donors during adventitious root (AR) formation. These DAMs may prevent the ancient P. orientalis cuttings from rooting, and gradual lignification of callus was one of the main reasons for the failed rooting of ancient P. orientalis cuttings. The rooting rates of ancient P. orientalis cuttings were improved by wounding the callus to identify wounding-induced rooting-promoting metabolites. After wounding, the contents of DAMs in zeatin (5′-methylthioadenosine, cis-zeatin-O-glucoside, and adenine) and aminoacyl-tRNA biosynthesis (l-glutamine, l-histidine, l-isoleucine, l-leucine, and l-arginine) pathways increased, which might promote cell division and provided energy for the rooting process. The findings of our study suggest that breaking down the lignification of callus via wounding can eventually improve the rooting rates of ancient P. orientalis cuttings, which provides a new solution for cuttings of other difficult-to-root horticultural and woody plants

    Soil chemistry, metabarcoding, and metabolome analyses reveal that a sugarcane—Dictyophora indusiata intercropping system can enhance soil health by reducing soil nitrogen loss

    Get PDF
    IntroductionGreater amounts of fertilizer are applied every year to meet the growing demand for food. Sugarcane is one of the important food sources for human beings.MethodsHere, we evaluated the effects of a sugarcane—Dictyophora indusiata (DI) intercropping system on soil health by conducting an experiment with three different treatments: (1) bagasse application (BAS process), (2) bagasse + DI (DIS process), and (3) the control (CK). We then analyzed soil chemistry, the diversity of soil bacteria and fungi, and the composition of metabolites to clarify the mechanism underlying the effects of this intercropping system on soil properties.Results and discussionSoil chemistry analyses revealed that the content of several soil nutrients such as nitrogen (N) and phosphorus (P) was higher in the BAS process than in the CK. In the DIS process, a large amount of soil P was consumed by DI. At the same time, the urease activity was inhibited, thus slowing down the loss of soil in the DI process, while the activity of other enzymes such as β-glucosidase and laccase was increased. It was also noticed that the content of lanthanum and calcium was higher in the BAS process than in the other treatments, and DI did not significantly alter the concentrations of these soil metal ions. Bacterial diversity was higher in the BAS process than in the other treatments, and fungal diversity was lower in the DIS process than in the other treatments. The soil metabolome analysis revealed that the abundance of carbohydrate metabolites was significantly lower in the BAS process than in the CK and the DIS process. The abundance of D(+)-talose was correlated with the content of soil nutrients. Path analysis revealed that the content of soil nutrients in the DIS process was mainly affected by fungi, bacteria, the soil metabolome, and soil enzyme activity. Our findings indicate that the sugarcane–DIS intercropping system can enhance soil health
    • …
    corecore