25 research outputs found
MONAI: An open-source framework for deep learning in healthcare
Artificial Intelligence (AI) is having a tremendous impact across most areas
of science. Applications of AI in healthcare have the potential to improve our
ability to detect, diagnose, prognose, and intervene on human disease. For AI
models to be used clinically, they need to be made safe, reproducible and
robust, and the underlying software framework must be aware of the
particularities (e.g. geometry, physiology, physics) of medical data being
processed. This work introduces MONAI, a freely available, community-supported,
and consortium-led PyTorch-based framework for deep learning in healthcare.
MONAI extends PyTorch to support medical data, with a particular focus on
imaging, and provide purpose-specific AI model architectures, transformations
and utilities that streamline the development and deployment of medical AI
models. MONAI follows best practices for software-development, providing an
easy-to-use, robust, well-documented, and well-tested software framework. MONAI
preserves the simple, additive, and compositional approach of its underlying
PyTorch libraries. MONAI is being used by and receiving contributions from
research, clinical and industrial teams from around the world, who are pursuing
applications spanning nearly every aspect of healthcare.Comment: www.monai.i
Centeredness Theory: Understanding and Measuring Well-Being Across Core Life Domains
Background: Centeredness Theory (CT) is proposed as a new mental health paradigm that focuses on well-being at a systems-level, across the core life domains of the self, the family unit, relationships, community, and work. The current studies aimed to validate the psychometric properties of a new scale that measures CT against existing well-being and mental health measures.Methods: Study 1 included 488 anonymous online respondents (46% females, 28% males, 25% unknown with median age between 31 and 35 years) across 38 countries who completed the CT scale. Study 2 included 49 first-year psychology students (90% females, mean age of 19 years) from Sydney Australia that completed the CT scale and other well-being and mental health questionnaires at baseline and 2-weeks follow-up.Results: Exploratory and confirmatory factor analyses resulted in a refined 60-item CT scale with five domains, each with four sub-domains. The CT scale demonstrated good internal consistency reliability and test-retest reliability, and showed evidence of convergent validity against other well-being measures (e.g., COMPAS-W Wellbeing Scale, SWLS scale, and Ryff's Psychological Well-being scale).Conclusions: The CT scale appears to be a reliable measure of well-being at a systems-level. Future studies need to confirm these findings in larger heterogeneous samples
Table_2_Centeredness Theory: Understanding and Measuring Well-Being Across Core Life Domains.DOCX
<p>Background: Centeredness Theory (CT) is proposed as a new mental health paradigm that focuses on well-being at a systems-level, across the core life domains of the self, the family unit, relationships, community, and work. The current studies aimed to validate the psychometric properties of a new scale that measures CT against existing well-being and mental health measures.</p><p>Methods: Study 1 included 488 anonymous online respondents (46% females, 28% males, 25% unknown with median age between 31 and 35 years) across 38 countries who completed the CT scale. Study 2 included 49 first-year psychology students (90% females, mean age of 19 years) from Sydney Australia that completed the CT scale and other well-being and mental health questionnaires at baseline and 2-weeks follow-up.</p><p>Results: Exploratory and confirmatory factor analyses resulted in a refined 60-item CT scale with five domains, each with four sub-domains. The CT scale demonstrated good internal consistency reliability and test-retest reliability, and showed evidence of convergent validity against other well-being measures (e.g., COMPAS-W Wellbeing Scale, SWLS scale, and Ryff's Psychological Well-being scale).</p><p>Conclusions: The CT scale appears to be a reliable measure of well-being at a systems-level. Future studies need to confirm these findings in larger heterogeneous samples.</p
Table_6_Centeredness Theory: Understanding and Measuring Well-Being Across Core Life Domains.DOCX
<p>Background: Centeredness Theory (CT) is proposed as a new mental health paradigm that focuses on well-being at a systems-level, across the core life domains of the self, the family unit, relationships, community, and work. The current studies aimed to validate the psychometric properties of a new scale that measures CT against existing well-being and mental health measures.</p><p>Methods: Study 1 included 488 anonymous online respondents (46% females, 28% males, 25% unknown with median age between 31 and 35 years) across 38 countries who completed the CT scale. Study 2 included 49 first-year psychology students (90% females, mean age of 19 years) from Sydney Australia that completed the CT scale and other well-being and mental health questionnaires at baseline and 2-weeks follow-up.</p><p>Results: Exploratory and confirmatory factor analyses resulted in a refined 60-item CT scale with five domains, each with four sub-domains. The CT scale demonstrated good internal consistency reliability and test-retest reliability, and showed evidence of convergent validity against other well-being measures (e.g., COMPAS-W Wellbeing Scale, SWLS scale, and Ryff's Psychological Well-being scale).</p><p>Conclusions: The CT scale appears to be a reliable measure of well-being at a systems-level. Future studies need to confirm these findings in larger heterogeneous samples.</p
Image_1_Centeredness Theory: Understanding and Measuring Well-Being Across Core Life Domains.pdf
<p>Background: Centeredness Theory (CT) is proposed as a new mental health paradigm that focuses on well-being at a systems-level, across the core life domains of the self, the family unit, relationships, community, and work. The current studies aimed to validate the psychometric properties of a new scale that measures CT against existing well-being and mental health measures.</p><p>Methods: Study 1 included 488 anonymous online respondents (46% females, 28% males, 25% unknown with median age between 31 and 35 years) across 38 countries who completed the CT scale. Study 2 included 49 first-year psychology students (90% females, mean age of 19 years) from Sydney Australia that completed the CT scale and other well-being and mental health questionnaires at baseline and 2-weeks follow-up.</p><p>Results: Exploratory and confirmatory factor analyses resulted in a refined 60-item CT scale with five domains, each with four sub-domains. The CT scale demonstrated good internal consistency reliability and test-retest reliability, and showed evidence of convergent validity against other well-being measures (e.g., COMPAS-W Wellbeing Scale, SWLS scale, and Ryff's Psychological Well-being scale).</p><p>Conclusions: The CT scale appears to be a reliable measure of well-being at a systems-level. Future studies need to confirm these findings in larger heterogeneous samples.</p