137 research outputs found

    Physical Conditions and Variability Processes in AGN Jets through Multi-Frequency Linear and Circular Radio Polarization Monitoring

    Full text link
    Radio polarimetry is an invaluable tool to investigate the physical conditions and variability processes in active galactic nuclei (AGN) jets. However, detecting their linear and circular polarization properties is a challenging endeavor due to their low levels and possible depolarization effects. We have developed an end-to-end data analysis methodology to recover the polarization properties of unresolved sources with high accuracy. It has been applied to recover the linear and circular polarization of 87 AGNs measured by the F-GAMMA program from July 2010 to January 2015 with a mean cadence of 1.3 months. Their linear polarization was recovered at four frequencies between 2.64 and 10.45 GHz and the circular polarization at 4.85 and 8.35 GHz. The physical conditions required to reproduce the observed polarization properties and the processes which induce their variability were investigated with a full-Stokes radiative transfer code which emulates the synchrotron emission of modeled jets. The model was used to investigate the conditions needed to reproduce the observed polarization behavior for the blazar 3C 454.3, assuming that the observed variability is attributed to evolving internal shocks propagating downstream.Comment: 6 pages, 2 figure

    Imaging an Event Horizon: Mitigation of Source Variability of Sagittarius A*

    Get PDF
    The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits vari- ability on timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we demonstrate that an image of the average quiescent emission, featuring the characteristic black hole shadow and photon ring predicted by general relativity, can nonetheless be obtained by observing over multiple days and subsequent processing of the visibilities (scaling, averaging, and smoothing) before imaging. Moreover, it is shown that this procedure can be combined with an existing method to mitigate the effects of interstellar scattering. Taken together, these techniques allow the black hole shadow in the Galactic center to be recovered on the reconstructed image.Comment: 10 pages, 12figures, accepted for publication in Ap

    The dependence of optical polarisation of blazars on the synchrotron peak frequency

    Get PDF
    The RoboPol instrument and the relevant program was developed in order to conduct a systematic study of the optical polarisation variability of blazars. Driven by the discovery that long smooth rotations of the optical polarisation plane can be associated with the activity in other bands and especially in gamma rays, the program was meant to investigate the physical mechanisms causing them and quantify the optical polarisation behaviour in blazars. Over the first three nominal observing seasons (2013, 2014 and 2015) RoboPol detected 40 rotations in 24 blazars by observing a gamma–ray-loud and gamma–ray-quite unbiassed sample of blazars, providing a reliable set of events for exploring the phenomenon. The obtain datasets provided the ground for a systematic quantification of the variability of the optical polarisation in such systems. In the following after a brief review of the discoveries that relate to the gamma-ray loudness of the sources we move on to discuss a simple jet model that explains the observed dichotomy in terms of polarisation between gamma–ray-loud and quite sources and the dependence of polarisation and the stability of the polarisation angle on the synchrotron peak frequency

    3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions

    Get PDF
    We present total and linearly polarized 3 mm Global mm-VLBI Array images of a sample of blazars and radio galaxies from the VLBA-BU-BLAZAR 7 mm monitoring program designed to probe the innermost regions of active galactic nuclei (AGN) jets and locate the sites of gamma-ray emission observed by the Fermi-LAT. The lower opacity at 3 mm and improved angular resolution, on the order of 50 microarcseconds, allow us to distinguish features in the jet not visible in the 7 mm VLBA data. We also compare two different methods used for the calibration of instrumental polarisation and we analyze the resulting images for some of the sources in the sample.Comment: Polarised Emission from Astrophysical Jets, June 12-16, 2017, Ierapetra, Greec

    Simulation of Shock-Shock interaction in parsec-scale jets

    Full text link
    The analysis of the radio light curves of the blazar CTA102 during its 2006 flare revealed a possible interaction between a standing shock wave and a traveling one. In order to better understand this highly non-linear process, we used a relativistic hydrodynamic code to simulate the high energy interaction and its related emission. The calculated synchrotron emission from these simulations showed an increase in turnover flux density, SmS_{m}, and turnover frequency, νm\nu_{m}, during the interaction and decrease to its initial values after the passage of the traveling shock wave.Comment: 4 pages, 1 figure, proceedings of the meeting "HEPRO III: High Energy Phenomena in Relativistic Outflows" (Barcelona, June 2011

    Precision timing of PSR J1012+5307 and strong-field GR tests

    Full text link
    We report on the high precision timing analysis of the pulsar-white dwarf binary PSR J1012+5307. Using 15 years of multi-telescope data from the European Pulsar Timing Array (EPTA) network, a significant measurement of the variation of the orbital period is obtained. Using this ideal strong-field gravity laboratory we derive theory independent limits for both the dipole radiation and the variation of the gravitational constant.Comment: 3 pages, Proceedings of the 12th Marcel Grossmann Meeting on General Relativity (MG 12

    Looking for the first time into the heart of the blazar TXS 2013+370

    Get PDF
    The compact radio source TXS 2013+370 is a γ-ray blazar which is located at a redshift of z = 0.859 at a galactic latitude b = 1.2°. We observed the source with Very Long Baseline Interferometry (VLBI) at 15, 43 and 86 GHz and studied the morphology and the kinematic properties of the jet. The VLBI data were then combined with flux density variability measurements at 15 and 235 GHz and with the available γ-ray light curve in the period 2008-2017. A cross-correlation analysis was performed to investigate the existence of a correlation between the variability observed in the different bands. The preliminary results of our study showed that the most prominent flares and maxima stem from the central VLBI region and most likely are associated with the nuclear region, namely the core, indicating that the activity is caused by the passage of traveling shocks through the core region. In the course of our analysis, we present for the first time a 86 GHz Global Millimeter VLBI Array (GMVA) image of the innermost jet region
    • …
    corecore