137 research outputs found

    Tracing the merger-driven evolution of active galaxies using the CJF sample

    Full text link
    In the context of the evolution of large structures in the Universe, it is unclear whether active galaxies are a phase which each galaxy undergoes, and what is the importance of the evolution of black holes in their centers. Binary black hole (BBH) systems could play a key role in our understanding of the above question. We investigate the Caltech-Jodrell Bank flat-spectrum (CJF) sample for evidence in favor of the merger-driven evolution scheme of active galaxies and search tracer-systems of AGN evolution and possible indications of BBH candidates. We discuss the validity and ambiguity of such indications and formulate a set of selection criteria for the detection of such systems. We conduct an extensive literature search for all available multi-wavelength information, concentrating on the optical and infrared regime, in addition to morphological information of the CJF sources. We analyze the statistics of this sample, in terms of these properties. We find 1 ULIRG (Mrk 231) included in the CJF, prototype of a transitory system. In total 28.6% of the CJF sources with z<0.4 are distorted or have a companion. Given the unbiased sample used here, this provides strong evidence for the ubiquity of the merger phenomenon in the context of active galaxies. We find a correlation between the radio and the near-infrared luminosity for the high-luminosity sources, interpreted in the context of the interplay between a star-formation and AGN component. We find a connection between variability and evolutionary transitory systems, as selected through their near-infrared colors. We select 28 sources that trace the different evolution phases of an AGN, as well as a number of the most promising BBH candidates. We find 4 sources with almost periodical variability in the optical and radio on similar timescales.Comment: 18 pages, 6 figures, accepted for publication in A&A (updated to match proofs

    Physical Conditions and Variability Processes in AGN Jets through Multi-Frequency Linear and Circular Radio Polarization Monitoring

    Full text link
    Radio polarimetry is an invaluable tool to investigate the physical conditions and variability processes in active galactic nuclei (AGN) jets. However, detecting their linear and circular polarization properties is a challenging endeavor due to their low levels and possible depolarization effects. We have developed an end-to-end data analysis methodology to recover the polarization properties of unresolved sources with high accuracy. It has been applied to recover the linear and circular polarization of 87 AGNs measured by the F-GAMMA program from July 2010 to January 2015 with a mean cadence of 1.3 months. Their linear polarization was recovered at four frequencies between 2.64 and 10.45 GHz and the circular polarization at 4.85 and 8.35 GHz. The physical conditions required to reproduce the observed polarization properties and the processes which induce their variability were investigated with a full-Stokes radiative transfer code which emulates the synchrotron emission of modeled jets. The model was used to investigate the conditions needed to reproduce the observed polarization behavior for the blazar 3C 454.3, assuming that the observed variability is attributed to evolving internal shocks propagating downstream.Comment: 6 pages, 2 figure

    3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions

    Get PDF
    We present total and linearly polarized 3 mm Global mm-VLBI Array images of a sample of blazars and radio galaxies from the VLBA-BU-BLAZAR 7 mm monitoring program designed to probe the innermost regions of active galactic nuclei (AGN) jets and locate the sites of gamma-ray emission observed by the Fermi-LAT. The lower opacity at 3 mm and improved angular resolution, on the order of 50 microarcseconds, allow us to distinguish features in the jet not visible in the 7 mm VLBA data. We also compare two different methods used for the calibration of instrumental polarisation and we analyze the resulting images for some of the sources in the sample.Comment: Polarised Emission from Astrophysical Jets, June 12-16, 2017, Ierapetra, Greec

    The dependence of optical polarisation of blazars on the synchrotron peak frequency

    Get PDF
    The RoboPol instrument and the relevant program was developed in order to conduct a systematic study of the optical polarisation variability of blazars. Driven by the discovery that long smooth rotations of the optical polarisation plane can be associated with the activity in other bands and especially in gamma rays, the program was meant to investigate the physical mechanisms causing them and quantify the optical polarisation behaviour in blazars. Over the first three nominal observing seasons (2013, 2014 and 2015) RoboPol detected 40 rotations in 24 blazars by observing a gamma–ray-loud and gamma–ray-quite unbiassed sample of blazars, providing a reliable set of events for exploring the phenomenon. The obtain datasets provided the ground for a systematic quantification of the variability of the optical polarisation in such systems. In the following after a brief review of the discoveries that relate to the gamma-ray loudness of the sources we move on to discuss a simple jet model that explains the observed dichotomy in terms of polarisation between gamma–ray-loud and quite sources and the dependence of polarisation and the stability of the polarisation angle on the synchrotron peak frequency

    Molecular gas in the immediate vicinity of Sgr A* seen with ALMA

    Full text link
    We report serendipitous detections of line emission with ALMA in band 3, 6, and 7 in the central parsec of the Galactic center at an up to now highest resolution (<0.7''). Among the highlights are the very first and highly resolved images of sub-mm molecular emission of CS, H13CO+, HC3N, SiO, SO, C2H, and CH3OH in the immediate vicinity (~1'' in projection) of Sgr A* and in the circumnuclear disk (CND). The central association (CA) of molecular clouds shows three times higher CS/X (X: any other observed molecule) luminosity ratios than the CND suggesting a combination of higher excitation - by a temperature gradient and/or IR-pumping - and abundance enhancement due to UV- and/or X-ray emission. We conclude that the CA is closer to the center than the CND is and could be an infalling clump consisting of denser cloud cores embedded in diffuse gas. Moreover, we identified further regions in and outside the CND that are ideally suited for future studies in the scope of hot/cold core and extreme PDR/XDR chemistry and consequent star formation in the central few parsecs

    Precision timing of PSR J1012+5307 and strong-field GR tests

    Full text link
    We report on the high precision timing analysis of the pulsar-white dwarf binary PSR J1012+5307. Using 15 years of multi-telescope data from the European Pulsar Timing Array (EPTA) network, a significant measurement of the variation of the orbital period is obtained. Using this ideal strong-field gravity laboratory we derive theory independent limits for both the dipole radiation and the variation of the gravitational constant.Comment: 3 pages, Proceedings of the 12th Marcel Grossmann Meeting on General Relativity (MG 12
    corecore