13 research outputs found

    The Needle Component of the Type III Secreton of Shigella Regulates the Activity of the Secretion Apparatus

    Get PDF
    Gram-negative bacteria commonly interact with eukaryotic host cells by using type III secretion systems (TTSSs or secretons). TTSSs serve to transfer bacterial proteins into host cells. Two translocators, IpaB and IpaC, are first inserted with the aid of IpaD by Shigella into the host cell membrane. Then at least two supplementary effectors of cell invasion, IpaA and IpgD, are transferred into the host cytoplasm. How TTSSs are induced to secrete is unknown, but their activation appears to require direct contact of the external distal tip of the apparatus with the host cell. The extracellular domain of the TTSS is a hollow needle protruding 60 nm beyond the bacterial surface. The monomeric unit of the Shigella flexneri needle, MxiH, forms a superhelical assembly. To probe the role of the needle in the activation of the TTSS for secretion, we examined the structure-function relationship of MxiH by mutagenesis. Most point mutations led to normal needle assembly, but some led to polymerization or possible length control defects. In other mutants, secretion was constitutively turned “on.” In a further set, it was “constitutively on” but experimentally “uninducible.” Finally, upon induction of secretion, some mutants released only the translocators and not the effectors. Most types of mutants were defective in interactions with host cells. Together, these data indicate that the needle directly controls the activity of the TTSS and suggest that it may be used to “sense” host cells

    O-Antigen Delays Lipopolysaccharide Recognition and Impairs Antibacterial Host Defense in Murine Intestinal Epithelial Cells

    Get PDF
    Although Toll-like receptor (TLR) 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs). Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS) recognition is unknown. Here, we demonstrate a strikingly delayed activation of IECs but not macrophages by wildtype Salmonella enterica subsp. enterica sv. (S.) Typhimurium as compared to isogenic O-antigen deficient mutants. Delayed epithelial activation is associated with impaired LPS internalization and retarded TLR4-mediated immune recognition. The O-antigen-mediated evasion from early epithelial innate immune activation significantly enhances intraepithelial bacterial survival in vitro and in vivo following oral challenge. These data identify O-antigen expression as an innate immune evasion mechanism during apical intestinal epithelial invasion and illustrate the importance of early innate immune recognition for efficient host defense against invading Salmonella

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Functional Analysis of the Salmonella Pathogenicity Island 2-Mediated Inhibition of Antigen Presentation in Dendritic Cells▿

    No full text
    Salmonella enterica is a facultative intracellular pathogen that is able to modify host cell functions by means of effector proteins translocated by the type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2). The SPI2-T3SS is also active in Salmonella after uptake by murine bone marrow-derived dendritic cells (BM-DC). We have previously shown that intracellular Salmonella interfere with the ability of BM-DC to stimulate antigen-dependent T-cell proliferation in an SPI2-T3SS-dependent manner. We observed that Salmonella-mediated inhibition of antigen presentation could be restored by external addition of peptides on major histocompatibility complex class II (MHC-II). The processing of antigens in Salmonella-infected cells was not altered; however, the intracellular loading of peptides on MHC-II was reduced as a function of the SPI2-T3SS. We set out to identify the effector proteins of the SPI2-T3SS involved in inhibition of antigen presentation and demonstrated that effector proteins SifA, SspH2, SlrP, PipB2, and SopD2 were equally important for the interference with antigen presentation, whereas SseF and SseG contributed to a lesser extent to this phenotype. These observations indicate the presence of a host cell-specific virulence function of a novel subset of SPI2-effector proteins

    Lipoarabinomannan-Responsive Polycytotoxic T Cells Are Associated with Protection in Human Tuberculosis

    No full text
    RationaleThe development of host-targeted, prophylactic, and therapeutic interventions against tuberculosis requires a better understanding of the immune mechanisms that determine the outcome of infection with Mycobacterium tuberculosis.ObjectivesTo identify T-cell-dependent mechanisms that are protective in tuberculosis.MethodsMulticolor flow cytometry, cell sorting and growth inhibition assays were employed to compare the frequency, phenotype and function of T lymphocytes from bronchoalveolar lavage or the peripheral blood.Measurements and main resultsAt two independent study sites, bronchoalveolar lavage cells from donors with latent tuberculosis infection limited the growth of virulent Mycobacterium tuberculosis more efficiently than those in patients who developed disease. Unconventional, glycolipid-responsive T cells contributed to reduced mycobacterial growth because antibodies to CD1b inhibited this effect by 55%. Lipoarabinomannan was the most potent mycobacterial lipid antigen (activation of 1.3% T lymphocytes) and activated CD1b-restricted T cells that limited bacterial growth. A subset of IFN-γ-producing lipoarabinomannan-responsive T cells coexpressed the cytotoxic molecules perforin, granulysin, and granzyme B, which we termed polycytotoxic T cells. Taking advantage of two well-defined cohorts of subjects latently infected with Mycobacterium tuberculosis or patients who developed active disease after infection, we found a correlation between the frequency of polycytotoxic T cells and the ability to control infection (latent tuberculosis infection, 62%; posttuberculosis patients, 26%).ConclusionsOur data define an unconventional CD8(+) T-cell subset (polycytotoxic T cells) that is based on antigen recognition and function. The results link clinical and mechanistic evidence that glycolipid-responsive, polycytotoxic T cells contribute to protection against tuberculosis
    corecore