36 research outputs found

    Lethal and sublethal effects of carlina oxide on Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae)

    Get PDF
    BACKGROUND: Tetranychus urticae Koch, is a polyphagous and damaging pest, presenting several resistant populations world- wide. Among new and more environmentally friendly control tools, botanical pesticides represent a valuable alternative to syn- thetic ones within integrated pest management strategies. Accordingly, we investigated the lethal and sublethal effects of carlina oxide isolated from Carlina acaulis (Asteraceae) roots on T. urticae and its natural enemy, the predatory mite, Neoseiulus californicus (McGregor). RESULTS: Carlina oxide (98.7% pure compound) was used for acaricidal tests on eggs, nymphs, and adult females of T. urticae (concentrations of 312.5, 625, 1250, 2500 and 5000 !L L!1), and eggs and females of N. californicus (1250 and 5000 !L L!1 on eggs and females, respectively). Behavioral two-choice tests were also conducted on phytoseiid females. Carlina oxide toxicity was higher on T. urticae females than nymphs (median lethal dose 1145 and 1825 !L L!1, respectively), whereas egg mortality and mean hatching time were signi!cantly affected by all tested concentrations. A decreasing daily oviposition rate for T. urticae was recorded with concentrations ranging from 625 to 5000 !L L!1, whereas negative effects on the population growth rate were recorded only with the three higher concentrations (1250, 2500 and 5000 !L L!1). No toxic effect on N. californicus females was found, but a strong repellent activity lasting for 48 h from application was recorded. CONCLUSION: Carlina oxide reduced longevity and fecundity of T. urticae adults, but not of N. californicus. This selective prop- erty allows us to propose it as a novel active ingredient of ecofriendly acaricides for T. urticae management

    Aniseed, Pimpinella anisum, as a source of new agrochemicals: phytochemistry and insights on insecticide and acaricide development

    Get PDF
    Pimpinella anisum L. (Apiaceae), known around the world as aniseed, is a widely cultivated crop, native of the sub-Mediterranean area. Its essential oil (EO) is exploitable in different fields such as food and beverages, pharmaceutics, cosmetics, and nutraceuticals. Regardless of the geographic origin, the EO exhibited consistent transanethole predominancy. Among the numerous biological properties exerted by aniseed EO, its antimicrobial, antifungal, insecticidal, and acaricidal effects have been extensively investigated for the formulation of biopesticides against larvae and adults of various pests and vectors. Hereafter, the published data on the insecticidal and acaricidal activity of aniseed EO and its major compounds on agricultural pests, stored-product pests, and arthropods of medical and veterinary interest is reviewed. For each study, the arthropod and the developmental stage on which the aniseed EO or the aniseed EO-based formulation were tested, the mode of action, the main constituents, and the exerted mortality, as well as the toxicity to non-target organisms and the possible sub-lethal effects are reported. The advantages of the possible use of aniseed EO as a biopesticide are analysed, as well as the current weaknesses and the critical points to be overcome to open the doors to the industrial utilization of Apiaceae EOs by the agrochemical industry

    Identification of miRNAs regulating MAPT expression and their analysis in plasma of patients with dementia

    Get PDF
    Background: Dementia is one of the most common diseases in elderly people and hundreds of thousand new cases per year of Alzheimer’s disease (AD) are estimated. While the recent decade has seen significant advances in the development of novel biomarkers to identify dementias at their early stage, a great effort has been recently made to identify biomarkers able to improve differential diagnosis. However, only few potential candidates, mainly detectable in cerebrospinal fluid (CSF), have been described so far. Methods: We searched for miRNAs regulating MAPT translation. We employed a capture technology able to find the miRNAs directly bound to the MAPT transcript in cell lines. Afterwards, we evaluated the levels of these miRNAs in plasma samples from FTD (n = 42) and AD patients (n = 33) and relative healthy controls (HCs) (n = 42) by using qRT-PCR. Results: Firstly, we found all miRNAs that interact with the MAPT transcript. Ten miRNAs have been selected to verify their effect on Tau levels increasing or reducing miRNA levels by using cell transfections with plasmids expressing the miRNAs genes or LNA antagomiRs. Following the results obtained, miR-92a-3p, miR-320a and miR-320b were selected to analyse their levels in plasma samples of patients with FTD and AD respect to HCs. The analysis showed that the miR-92a-1-3p was under-expressed in both AD and FTD compared to HCs. Moreover, miR-320a was upregulated in FTD vs. AD patients, particularly in men when we stratified by sex. Respect to HC, the only difference is showed in men with AD who have reduced levels of this miRNA. Instead, miR-320b is up-regulated in both dementias, but only patients with FTD maintain this trend in both genders. Conclusions: Our results seem to identify miR-92a-3p and miR-320a as possible good biomarkers to discriminate AD from HC, while miR-320b to discriminate FTD from HC, particularly in males. Combining three miRNAs improves the accuracy only in females, particularly for differential diagnosis (FTD vs. AD) and to distinguish FTD from H

    Value of systolic pulmonary arterial pressure as a prognostic factor of death in the systemic sclerosis EUSTAR population.

    Get PDF
    The aim of this study was to assess the prognostic value of systolic pulmonary artery pressure (sPAP) estimated by echocardiography in the multinational European League Against Rheumatism Scleroderma Trial and Research (EUSTAR) cohort.Data for patients with echocardiography documented between 1 January 2005 and 31 December 2011 were extracted from the EUSTAR database. Stepwise forward multivariable statistical Cox pulmonary hypertension analysis was used to examine the independent effect on survival of selected variables.Based on our selection criteria, 1476 patients were included in the analysis; 87\% of patients were female, with a mean age of 56.3 years (s.d. 13.5) and 31\% had diffuse SSc. The mean duration of follow-up was 2.0 years (s.d. 1.2, median 1.9). Taking index sPAP of 50 mmHg. In a multivariable Cox model, sPAP and the diffusing capacity for carbon monoxide (DLCO) were independently associated with the risk of death [HR 1.833 (95\% CI 1.035, 3.247) and HR 0.973 (95\% CI 0.955, 0.991), respectively]. sPAP was an independent risk factor for death with a HR of 3.02 (95\% CI 1.91, 4.78) for sPAP ≥36 mmHg.An estimated sPAP >36 mmHg at baseline echocardiography was significantly and independently associated with reduced survival, regardless of the presence of pulmonary hypertension based on right heart catheterization

    Do changes in Lactuca sativa metabolic performance, induced by mycorrhizal symbionts and leaf UV-B irradiation, play a role towards tolerance to a polyphagous insect pest?

    Get PDF
    : The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemical adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi (AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) inoculation as well as the role of a major insect pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbuscules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning

    Risposte comportamentali a nuove esche proteiche nella mosca mediterranea della frutta, Ceratitis capitata

    No full text
    Ceratitis capitata (Wiedemann), medfly, è un tefritide frugivoro cosmopolita altamente polifago, che attacca fino a 300 specie differenti sia di interesse commerciale che selvatiche. Il danno è a carico di frutti, presenta un’evoluzione sintomatica differente a seconda della specie e dei fattori ambientali. Le modalità di controllo della pest sono ancora incentrate sull’impiego di insetticidi chimici ma, negli ultimi anni, presentano una maggiore spinta verso la ricerca di metodi a basso impatto ambientali, tra essi la tecnica del lure and kill rappresenta una buona metodologia di controllo del pest, sebbene necessiti di ulteriori implementazioni. La presente tesi si pone l’obiettivo di identificare tra cinque esche proteiche di recente formulazione, quale sia la più efficace in termini di attrattività nei confronti delle femmine di C. capitata. Infatti, lo sviluppo di nuovi ed efficienti attrattivi alimentari per la medfly è di fondamentale per la messa a punto di affidabili sistemi di controllo all’interno dell’approccio lure and kill. L’attrattività dei cinque baits è stata valutata, inizialmente, in condizioni di laboratorio mediante l’utilizzo di olfattometri statici, poi, il composto più attrattivo è stato testato sia in flight tunnel sia in condizioni di semi-field, entrambe a dosi comparabili a quelle da utilizzarsi in campo. Le performances del composto sono state comparate con l’attrattivo commerciale SEDQ lure

    Leaf UV-B Irradiation and Mycorrhizal Symbionts Affect Lettuce VOC Emissions and Defence Mechanisms, but Not Aphid Feeding Preferences

    No full text
    Arbuscular mycorrhizal fungi (AMF) and ultraviolet-B radiation (UV-B) play important roles in plant–insect interactions by altering plant physiology and histology. We hypothesized that UV-B-induced oxidative stress was mitigated by AMF symbiosis. In this study, we conducted a multifactorial experiment to explore lettuce plant response to AMF inoculation and UV-B exposure (0.4 W m−2; 16 h d−1; 2 weeks), either together or individually, as well as the interaction with the polyphagous insect pest Myzus persicae (Sulzer). Lettuce plants subjected to UV-B radiation showed an increase in callose and oxidative stress indicators, as well as a decrease in stomatal density. Mycorrhizal colonization cancelled out the effect of UV-B on stomatal density, while the symbiosis was not affected by UV-B treatment. The plant volatile emission was significantly altered by UV-B treatment. Specifically, the non-terpene 1-undecene abundance (+M/+UVB: 48.0 ± 7.78%; −M/+UVB: 56.6 ± 14.90%) was increased, whereas the content of the non-terpene aldehydes decanal (+M/+UVB: 8.50 ± 3.90%; −M/+UVB: 8.0 ± 4.87%) and undecanal (+M/+UVB: 2.1 ± 0.65%; −M/+UVB: 1.20 ± 1.18%) and the sesquiterpene hydrocarbons (+M/+UVB: 18.0 ± 9.62 %; −M/+UVB: 19.2 ± 5.90%) was decreased. Mycorrhization, on the other hand, had no significant effect on the plant volatilome, regardless of UV-B treatment. Aphid population was unaffected by any of the treatments, implying a neutral plant response. Overall, this study provides new insights about the interactions among plants, UV-B, and AMF, outlining their limited impact on a polyphagous insect pest

    Toxics or Lures? Biological and Behavioral Effects of Plant Essential Oils on Tephritidae Fruit Flies

    No full text
    The family Tephritidae (Diptera) includes species that are highly invasive and harmful to crops. Due to globalization, international trade, and human displacement, their spread is continuously increasing. Unfortunately, the control of tephritid flies is still closely linked to the use of synthetic insecticides, which are responsible for detrimental effects on the environment and human health. Recently, research is looking for alternative and more eco-friendly tools to be adopted in Integrated Pest Management (IPM) programs. In this regard, essential oils (EOs) and their main compounds represent a promising alternative to chemical insecticides. EOs are made up of phytoconstituents formed from the secondary metabolism of many plants and can act as attractants or toxics, depending on the dose. Because of this unique characteristic, EOs and their main constituents are promising tools that can be used both in Sterile Insect Technique (SIT) programs and in the “lure and kill” technique, exploiting the attractiveness of the product in the former case and its toxicity in the latter. In this article, current knowledge on the biological and behavioral effects of EOs and their main constituents on tephritid fruit flies is reviewed, mainly focusing on species belonging to the Anastrepha, Bactrocera, Ceratitis, and Zeugodacus genera. The mechanisms of action of EOs, their real-world applications, and challenges related to their use in IPM are critically discussed

    Behavioural insights and biocontrol of arthropod pests of fruit and horticultural crops in the Mediterranean area

    No full text
    The importance of studying various aspects of Integrated Pest Management (IPM) cannot be overlooked, as it represents a multifaceted approach crucial for sustainable agriculture. Investigating insect behavior at different trophic levels is fundamental for enhancing biocontrol strategies. A comprehensive understanding of the reproductive behavior of key biocontrol organisms enables the development of more effective pest management techniques. Simultaneously, the exploration of the role of abiotic stressors, including UV-B radiation and electromagnetic fields (EMFs), provides insights into their potential impact on insect physiology and behavior, influencing the dynamics of ecological interactions. Additionally, the integration of precision agriculture techniques, exemplified by advanced monitoring technologies and deep learning applications, enhances the efficacy of IPM programs. These technologies contribute to timely and accurate pest detection, facilitating the implementation of intervention strategies based on climate parameters and crop conditions. The imperative of developing green insecticides is underscored by the environmental consequences of synthetic alternatives. The study of novel environmentally friendly pesticides, such as essential oils, not only addresses the need for effective pest management but also emphasizes the importance of comprehending their sub-lethal effects on insect life-history traits and behaviors. The pursuit of green insecticides aligns with the broader goal of creating sustainable and ecologically alternatives for pest control in agriculture. In a nutshell, a holistic exploration of insect behavior, innovative monitoring techniques, and the development of green insecticides collectively contribute to the advancement of IPM, fostering environmentally friendly and economically viable approaches to crop protection

    C’è una larva nel mio piatto! Diffusione degli insetti nella dieta occidentale.

    No full text
    Insects are commonly eaten by more than two billion people around the world. EFSA's recent approval of Tenebrio molitor larvae as food paves the way for insect consumption in the European Union. The introduction of insects as food in the diet of Western countries could be an environmentalfriendly solution to the growing demand for animal proteins over intensive farming. Despite advances in legislation and food safety, there is still a cultural barrier to be overcome, which still considers insects as organisms harmful to agriculture and human
    corecore