119 research outputs found

    Fabricating nanostructures on fused silica using femtosecond infrared pulses combined with sub-nanojoule ultraviolet pulses

    Get PDF
    Circular craters with diameters of 500 nm are fabricated on the surface of fused silica by femtosecond ultraviolet–infrared (UV–IR) pulse trains with 0.8 nJ UV pulse energy. UV damage thresholds at different IR energies and UV–IR delays are measured. Diameters and depths of the ablated craters can be modified by adding the IR pulse and varying the UV–IR delays. These results demonstrate the feasibility of nanomachining using short wavelength lasers with pulse energy far below normal damage thresholds

    Damage formation on fused silica illuminated with ultraviolet-infrared femtosecond pulse pairs

    Get PDF
    Citation: Yu, X., Chang, Z., Corkum, P. B., & Lei, S. (2015). Damage formation on fused silica illuminated with ultraviolet-infrared femtosecond pulse pairs. Proceedings of SPIE. doi:10.1117/12.2182633We investigate damage formation on the surface of fused silica by two femtosecond laser pulses, a tightly focused 266 nm (UV) pulse followed by a loosely focused 800 nm (IR) pulse. We show that the damage size is determined by the UV pulse, and only a small fraction of the normal UV damage threshold energy is needed to cause damage when combined with the properly delayed IR pulse. Our results, analyzed with a rate equation model, suggest that the UV pulse generates seed electrons through multiphoton absorption and the IR pulse utilizes these electrons to cause damage by avalanche ionization. By tuning such parameters like pulse energy, time delay, IR pulse duration and polarization, we further demonstrate that damage profile can be controlled. Copyright © 2015 SPIE

    Coherent x-ray generation at 2.7nm using 25fs laser pulses

    Full text link
    We demonstrate for the first time that coherent soft-x-ray pulses at wavelengths of 2.7nm can be generated using 25fs driving pulses. High-order harmonic generation in He is used to produce the femtosecond x-ray harmonics, which exhibit discrete individual orders up to 221, followed by a continuum of unresolved harmonics which extend up to at least the 299th order, corresponding to a wavelength of 2.7nm, or an energy of 450eV. The large ionization potential of He, together with the ultrashort nature of the driving field, results in this dramatic extension of the harmonic plateau, by approximately 200 orders more than has been observed previously. We also obtain excellent agreement with theoretical predictions. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87449/2/296_1.pd

    Characterizing ultrabroadband attosecond lasers

    Get PDF
    Recent progress in sub-laser-cycle gating of high-order harmonic generation promises to push the limits on optical pulse durations below the atomic unit of time, 24 as, which corresponds to a bandwidth broader than 75 eV. However, the available techniques for attosecond pulse measurement are valid only for narrow-bandwidth spectra, due to one of the key approximations made in the phase retrieval. Here we report a new technique for characterizing attosecond pulses, whereby the spectral phase of the attosecond pulse is extracted from the oscillation component with the dressing laser frequency in the photoelectron spectrogram. This technique, termed PROOF (Phase Retrieval by Omega Oscillation Filtering), can be applied to characterizing attosecond pulses with ultrabroad bandwidths
    • …
    corecore