14 research outputs found

    Searching Transferable Mixed-Precision Quantization Policy through Large Margin Regularization

    Full text link
    Mixed-precision quantization (MPQ) suffers from time-consuming policy search process (i.e., the bit-width assignment for each layer) on large-scale datasets (e.g., ISLVRC-2012), which heavily limits its practicability in real-world deployment scenarios. In this paper, we propose to search the effective MPQ policy by using a small proxy dataset for the model trained on a large-scale one. It breaks the routine that requires a consistent dataset at model training and MPQ policy search time, which can improve the MPQ searching efficiency significantly. However, the discrepant data distributions bring difficulties in searching for such a transferable MPQ policy. Motivated by the observation that quantization narrows the class margin and blurs the decision boundary, we search the policy that guarantees a general and dataset-independent property: discriminability of feature representations. Namely, we seek the policy that can robustly keep the intra-class compactness and inter-class separation. Our method offers several advantages, i.e., high proxy data utilization, no extra hyper-parameter tuning for approximating the relationship between full-precision and quantized model and high searching efficiency. We search high-quality MPQ policies with the proxy dataset that has only 4% of the data scale compared to the large-scale target dataset, achieving the same accuracy as searching directly on the latter, and improving the MPQ searching efficiency by up to 300 times

    Knee anterior cruciate ligament bio stiffness measuring instrument

    Get PDF
    Aiming at the lack of timely and effective evaluation of knee anterior cruciate ligament (ACL) reconstruction, a knee ACL force and displacement measuring instrument was developed. Test experiments were carried out using a laboratory-made test platform and a robotic arm. Firstly, the importance of anterior cruciate ligament reconstruction surgery is introduced. The necessity of this kind of measuring instrument is proposed. The reliability of the lower stiffness measuring instrument under different measurement conditions in space is verified by the mechanical model of the previous ACL in-situ measurement. Then the design structure and measurement system of the instrument are introduced in detail. Finally, using the laboratory-made test platform and the UR5 robot arm and stiffness measuring instrument for the displacement and force test accuracy experiments, and the pig bone anterior cruciate ligament test and postoperative evaluation experiments, prove that the measuring instrument can be used for ACL Assessment of reconstructive surgery

    The effect of environment on intestinal microbial diversity of Panthera animals may exceed genetic relationship

    Get PDF
    Intestinal microbes are important symbiotes in the gastrointestinal tract of mammals, which are affected by food, environment, climate, genetics, and other factors. The gut microbiota of felines has been partially studied, but a comprehensive comparison of the gut microbiota of Panthera species was less reported. In this study, we compared the gut microbial composition and diversity of five species of Panthera (Panthera tigris, Panthera leo, Panthera onca, Panthera pardus, and Panthera uncia) by 16S ribosomal RNA (rRNA) amplicon sequencing. The results showed that Firmicutes was the most abundant phylum among all the Panthera species, followed by Actinobacteria, Fusobacteria, Bacteroidetes, Proteobacteria, Acidobacteria, Verrucomicrobia, Gemmatimonadetes, and Euryarchaeota. There were significant differences in observed species of fecal microbiota among different Panthera animals (P < 0.05), indicating that there is species specificity among Panthera fecal microbiota. When the samples were further grouped according to sampling locations, the comparison of the alpha diversity index between groups and beta diversity analysis showed that there were significant differences in the fecal microflora of animals from different sampling locations. Cluster analysis showed that fecal microbes of animals from the same sampling location were clustered, while gut microbes of animals of the same species, but from different sampling locations, were separated. These results indicate that environment may have more influence on mammals’ fecal microbial diversity than genetic relationships

    Characteristics of change of the SST in the tropical western Pacific and the tropical Indian Ocean and its response to the change of the Antarctic ice area

    Get PDF
    In this paper, by using ocean surface temperature data (COADS), the study is made of the characteristics of the monthly and annual changes of the SST in the tropical western Pacific and Indian Oceans, which have important influences on the climate change of the whole globe and the relation between ENSO (El Nino Southern Oscillation) and the Antarctic ice area is also discussed. The result indicates that in the tropical western Pacific and the Indian Oceans the change of Sea Surface Temperature (SST) is conspicuous both monthly and annually, and shows different change tendency between them. This result may be due to different relation in the vibration period of SST between the two Oceans. The better corresponding relationship is obvious in the annual change of SST in the tropical Indian Ocean with the occurrence El Nino and La Nina. The change of the SST in the tropical western Pacific and the tropical Indian Oceans has a close relation to the Antarctic ice area, especially to the ice areas in the eastern-south Pole and Ross Sea, and its notable correlative relationship appears in 16 months when the SST of the tropical western Pacific and the Indian Oceans lag back the Antarctic ice area

    Comparison and Phylogenetic Analysis of Mitochondrial Genomes of Talpidae Animals

    No full text
    Talpidae is a model group for evolutionary studies due to their highly specialized morphologies and diverse lifestyles. Mitochondrial genomes are molecular markers commonly used in species evolution and phylogenetic studies. In this study, the complete mitochondrial genome sequence of Scaptochirus moschatus was obtained by Illumina NovaSeq sequencing. The complete mitochondrial genomes of 14 Talpidae species (including Scaptochirus moschatus obtained in the present study) and the cytochrome b (Cyt b) gene sequences of 48 Talpidae species were downloaded from the NCBI database for comparison and phylogenetic studies to analyze the phylogenetic relationships and to find the possible reasons of the niche differentiation and ecotype specialization of Talpidae animals. The results showed that the mitochondrial genome sequences of 14 species belonging to the family Talpidae were 16,528 to 16,962 bp, all containing 13 protein-coding genes, 22 tRNA, two rRNA, and a non-coding region (control region). The difference in the number of repetitive repeats in the control region is responsible for the difference in the length of Talpidae mitochondrial genome sequences. Combining the divergence time of Talpidae animals with the geological history, it is found that the niche differentiation and ecotype divergence of Talpidae is closely related to historically global climate changes. Semi-aquatic groups diverged in the early Oligocene (about 31.22 MYA), probably in response to the global climate transition from warm to cool. During the early Miocene (about 19.54 MYA), some species of Talpidae moved to underground habitats and formed fossorial groups that were adept at digging due to the effects of the glaciation. In the middle Miocene (about 16.23 MYA), some Talpidae animals returned to the ground and formed semi-fossorial shrew moles as global climate warming again

    Rotundic Acid Protects against Metabolic Disturbance and Improves Gut Microbiota in Type 2 Diabetes Rats

    No full text
    Rotundic acid (RA) is a major triterpene constituent in the barks of Ilex rotunda Thunb, which have been widely used to make herbal tea for health care in southern China. RA has a variety of bioactivities such as anti-inflammation and lipid-lowering effect. However, little is known about the effects and mechanisms of RA on metabolic disturbance in type 2 diabetes (T2D) and its effect on gut microbiota. A T2D rat model induced by high fat diet (HFD) feeding and low-dose streptozotocin (STZ) injection was employed and RA showed multipronged effects on T2D and its complications, including improving glucolipid metabolism, lowering blood pressure, protecting against cardiovascular and hepatorenal injuries, and alleviating oxidative stress and inflammation. Furthermore, 16s rRNA gene sequencing was carried out on an Illumina HiSeq 2500 platform and RA treatment could restore the gut microbial dysbiosis in T2D rats to a certain extent. RA treatment significantly enhanced the richness and diversity of gut microbiota. At the genus level, beneficial or commensal bacteria Prevotella, Ruminococcus, Leuconostoc and Streptococcus were significantly increased by RA treatment, while RA-treated rats had a lower abundance of opportunistic pathogen Klebsiella and Proteus. Spearman’s correlation analysis showed that the abundances of these bacteria were strongly correlated with various biochemical parameters, suggesting that the improvement of gut microbiota might help to prevent or attenuate T2D and its complication. In conclusion, our findings support RA as a nutraceutical agent or plant foods rich in this compound might be helpful for the alleviation of T2D and its complications through improving gut microbiota

    Simultaneously Quantitative Analysis of Naringin and Its Major Human Gut Microbial Metabolites Naringenin and 3-(4′-Hydroxyphenyl) Propanoic Acid via Stable Isotope Deuterium-Labeling Coupled with RRLC-MS/MS Method

    No full text
    Widespread in citrus fruits, naringin, a natural 2,3-dihydroflavonoid, is of particular interest to scientists and has a broad range of beneficial bioactivities to health. Orally administered naringin remains in the gut tract for a relatively long time because of its low bioavailability. Under the metabolism mediated by human gut microbiota, naringin could be an active precursor for derived metabolites to play important physiological roles. However, naringin and its metabolites are hard to accurately quantify due to severe endogenic interference. In this study, an analytical rapid resolution liquid chromatography tandem mass spectrometry (RRLC-MS/MS) method coupled with stable isotope deuterium-labeling is developed and validated to simultaneously quantify naringin as well as its major human gut microbial metabolites naringenin and 3-(4′-hydroxyphenyl) propanoic acid. By eliminating the matrix interferences, this strategy not only confirms naringenin and 3-(4′-hydroxyphenyl) propanoic acid as the predominant metabolites which contribute to the pharmacological effects of naringin but also provides a suitable choice for other flavonoid pharmacokinetics study
    corecore