2 research outputs found
Gene flow in a pioneer plant metapopulation (Myricaria germanica) at the catchment scale in a fragmented alpine river system
River alterations for natural hazard mitigation and land reclamation result in habitat decline and fragmentation for riparian plant species. Extreme events such as floods are responsible for additional local species loss or population decline. Tributaries might provide refugia and subsequent source populations for the colonization of downstream sites in connected riverine networks with metapopulations of plant species. In this study, we analyzed the metapopulation structure of the endangered riparian shrub species Myricaria germanica along the river Isel, Austria, which is part of the Natura 2000 network, and its tributaries. The use of 22 microsatellite markers allowed us to assess the role of tributaries and single populations as well as gene flow up- and downstream. The analysis of 1307 individuals from 45 sites shows the influence of tributaries to the genetic diversity at Isel and no overall isolation by distance pattern. Ongoing bidirectional gene flow is revealed by the detection of first-generation migrants in populations of all tributaries as well as the river Isel, supporting upstream dispersal by wind (seeds) or animals (seeds and pollen). However, some populations display significant population declines and high inbreeding, and recent migration rates are non-significant or low. The genetic pattern at the mouth of river Schwarzach into Isel and shortly thereafter river Kalserbach supports the finding that geographically close populations remain connected and that tributaries can form important refugia for M. germanica in the dynamic riverine network. Conservation and mitigation measures should therefore focus on providing sufficient habitat along tributaries of various size allowing pioneer plants to cope with extreme events in the main channel, especially as they are expected to be more frequent under changing climate
Pseudomonas orientalis F9: A Potent Antagonist against Phytopathogens with Phytotoxic Effect in the Apple Flower
In light of public concerns over the use of pesticides and antibiotics in plant protection and the subsequent selection for spread of resistant bacteria in the environment, it is inevitable to broaden our knowledge about viable alternatives, such as natural antagonists and their mode of action. The genus Pseudomonas is known for its metabolic versatility and genetic plasticity, encompassing pathogens as well as antagonists. We characterized strain Pseudomonas orientalis F9, an isolate from apple flowers in a Swiss orchard, and determined its antagonistic activity against several phytopathogenic bacteria, in particular Erwinia amylovora, the causal agent of fire blight. P. orientalis F9 displayed antagonistic activity against a broad suite of phytopathogenic bacteria in the in vitro tests. The promising results from this analysis led to an ex vivo assay with E. amylovora CFBP1430Rif and P. orientalis F9 infected detached apple flowers. F9 diminished the fire blight pathogen in the flowers but also revealed phytotoxic traits. The experimental results were discussed in light of the complete genome sequence of F9, which revealed the strain to carry phenazine genes. Phenazines are known to contribute to antagonistic activity of bacterial strains against soil pathogens. When tested in the cress assay with Pythium ultimum as pathogen, F9 showed results comparable to the known antagonist P. protegens CHA0