27,866 research outputs found

    Soft error rate estimation in deep sub-micron CMOS

    Get PDF
    Soft errors resulting from the impact of charged particles are emerging as a major issue in the design of reliable circuits at deep sub-micron dimensions. In this paper, we model the sensitivity of individual circuit classes to single event upsets using predictive technology models over a range of CMOS device sizes from 90 nm down to 32 nm. Modeling the relative position of particle strikes as injected current pulses of varying amplitude and fall time, we find that the critical charge for each technology is an almost linear function both of the fall time of the injected current and the supply voltage. This simple relationship will simplify the task of estimating circuit-level soft error rate (SER) and support the development of an efficient SER modeling and optimization tool that might eventually be integrated into a high level language design flow

    Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach

    Get PDF
    Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR

    Morphology and thermal conductivity of model organic aerogels

    Get PDF
    The intersection volume of two independent 2-level cut Gaussian random fields is proposed to model the open-cell microstructure of organic aerogels. The experimentally measured X-ray scattering intensity, surface area and solid thermal conductivity of both polymeric and colloidal organic aerogels can be accounted for by the model.Comment: 5 pages. RevTex with 4 encapsulated figures. Higher resolution figures have been submitted for publication. To be published in Phys. Rev. E (Rapid Comm.). email, [email protected]

    Measuring spectrum of spin wave using vortex dynamics

    Full text link
    We propose to measure the spectrum of magnetic excitation in magnetic materials using motion of vortex lattice driven by both ac and dc current in superconductors. When the motion of vortex lattice is resonant with oscillation of magnetic moments, the voltage decreases at a given current. From transport measurement, one can obtain frequency of the magnetic excitation with the wave number determined by vortex lattice constant. By changing the lattice constant through applied magnetic fields, one can obtains the spectrum of the magnetic excitation up to a wave vector of order 10 nm110\rm{\ nm^{-1}}.Comment: 4 pages, 2 figure

    Microwave-induced nonequilibrium temperature in a suspended carbon nanotube

    Full text link
    Antenna-coupled suspended single carbon nanotubes exposed to 108 GHz microwave radiation are shown to be selectively heated with respect to their metal contacts. This leads to an increase in the conductance as well as to the development of a power-dependent DC voltage. The increased conductance stems from the temperature dependence of tunneling into a one-dimensional electron system. The DC voltage is interpreted as a thermovoltage, due to the increased temperature of the electron liquid compared to the equilibrium temperature in the leads

    Spin photocurrent, its spectra dependence, and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas

    Full text link
    Converse effect of spin photocurrent and current induced spin polarization are experimentally demonstrated in the same two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin polarization and spin orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates the system with dominating structure inversion asymmetry.Comment: 13 pages, 4 figure
    corecore