120 research outputs found

    A New Two-Dimensional Functional Material with Desirable Bandgap and Ultrahigh Carrier Mobility

    Full text link
    Two-dimensional (2D) semiconductors with direct and modest bandgap and ultrahigh carrier mobility are highly desired functional materials for nanoelectronic applications. Herein, we predict that monolayer CaP3 is a new 2D functional material that possesses not only a direct bandgap of 1.15 eV (based on HSE06 computation), and also a very high electron mobility up to 19930 cm2 V-1 s-1, comparable to that of monolayer phosphorene. More remarkably, contrary to the bilayer phosphorene which possesses dramatically reduced carrier mobility compared to its monolayer counterpart, CaP3 bilayer possesses even higher electron mobility (22380 cm2 V-1 s-1) than its monolayer counterpart. The bandgap of 2D CaP3 can be tuned over a wide range from 1.15 to 0.37 eV (HSE06 values) through controlling the number of stacked CaP3 layers. Besides novel electronic properties, 2D CaP3 also exhibits optical absorption over the entire visible-light range. The combined novel electronic, charge mobility, and optical properties render 2D CaP3 an exciting functional material for future nanoelectronic and optoelectronic applications

    Amplitude- and phase-resolved nano-spectral imaging of phonon polaritons in hexagonal boron nitride

    Full text link
    Phonon polaritons are quasiparticles resulting from strong coupling of photons with optical phonons. Excitation and control of these quasiparticles in 2D materials offer the opportunity to confine and transport light at the nanoscale. Here, we image the phonon polariton (PhP) spectral response in thin hexagonal boron nitride (hBN) crystals as a representative 2D material using amplitude- and phase-resolved near-field interferometry with broadband mid-IR synchrotron radiation. The large spectral bandwidth enables the simultaneous measurement of both out-of-plane (780 cm-1) and in-plane (1370 cm-1) hBN phonon modes. In contrast to the strong and dispersive in-plane mode, the out-of-plane mode PhP response is weak. Measurements of the PhP wavelength reveal a proportional dependence on sample thickness for thin hBN flakes, which can be understood by a general model describing two-dimensional polariton excitation in ultrathin materials

    Real-time Multi-person Eyeblink Detection in the Wild for Untrimmed Video

    Full text link
    Real-time eyeblink detection in the wild can widely serve for fatigue detection, face anti-spoofing, emotion analysis, etc. The existing research efforts generally focus on single-person cases towards trimmed video. However, multi-person scenario within untrimmed videos is also important for practical applications, which has not been well concerned yet. To address this, we shed light on this research field for the first time with essential contributions on dataset, theory, and practices. In particular, a large-scale dataset termed MPEblink that involves 686 untrimmed videos with 8748 eyeblink events is proposed under multi-person conditions. The samples are captured from unconstrained films to reveal "in the wild" characteristics. Meanwhile, a real-time multi-person eyeblink detection method is also proposed. Being different from the existing counterparts, our proposition runs in a one-stage spatio-temporal way with end-to-end learning capacity. Specifically, it simultaneously addresses the sub-tasks of face detection, face tracking, and human instance-level eyeblink detection. This paradigm holds 2 main advantages: (1) eyeblink features can be facilitated via the face's global context (e.g., head pose and illumination condition) with joint optimization and interaction, and (2) addressing these sub-tasks in parallel instead of sequential manner can save time remarkably to meet the real-time running requirement. Experiments on MPEblink verify the essential challenges of real-time multi-person eyeblink detection in the wild for untrimmed video. Our method also outperforms existing approaches by large margins and with a high inference speed.Comment: Accepted by CVPR 202

    Chemisorption Induced Formation of Biphenylene Dimer on Surfaces

    Full text link
    We report an example that demonstrates the clear interdependence between surface-supported reactions and molecular adsorption configurations. Two biphenyl-based molecules with two and four bromine substituents, i.e. 2,2-dibromo-biphenyl (DBBP) and 2,2,6,6-tetrabromo-1,1-biphenyl (TBBP), show completely different reaction pathways on a Ag(111) surface, leading to the selective formation of dibenzo[e,l]pyrene and biphenylene dimer, respectively. By combining low-temperature scanning tunneling microscopy, synchrotron radiation photoemission spectroscopy, and density functional theory calculations, we unravel the underlying reaction mechanism. After debromination, a bi-radical biphenyl can be stabilized by surface Ag adatoms, while a four-radical biphenyl undergoes spontaneous intramolecular annulation due to its extreme instability on Ag(111). Such different chemisorption-induced precursor states between DBBP and TBBP consequently lead to different reaction pathways after further annealing. In addition, using bond-resolving scanning tunneling microscopy and scanning tunneling spectroscopy, we determine the bond length alternation of biphenylene dimer product with atomic precision, which contains four-, six-, and eight-membered rings. The four-membered ring units turn out to be radialene structures
    • …
    corecore