1,037 research outputs found

    Case report of rapidly progressive proliferative verrucous leukoplakia and a proposal for aetiology in mainland China

    Get PDF
    Proliferative verrucous leukoplakia (PVL) is a rare oral leukoplakia and has four features such as chronic proliferation, multiple occurrences, refractoriness to treatment and high rate of malignant transformation. As mentioned above, most PVL cases processed to malignancy over many years, sometimes 20 years. However, this report described a case of rapid progress, which had malignant transformation in a short period. Additionally, the aetiology of PVL was discussed and immunity was proposed as the possible cause

    Modulation of the thermodynamic, kinetic and magnetic properties of the hydrogen monomer on graphene by charge doping

    Full text link
    The thermodynamic, kinetic and magnetic properties of the hydrogen monomer on doped graphene layers were studied by ab initio simulations. Electron doping was found to heighten the diffusion potential barrier, while hole doping lowers it. However, both kinds of dopings heighten the desorption potential barrier. The underlying mechanism was revealed by investigating the effect of doping on the bond strength of graphene and on the electron transfer and the coulomb interaction between the hydrogen monomer and graphene. The kinetic properties of H and D monomers on doped graphene layers during both the annealing process (annealing time t0=t_0 =300 s) and the constant-rate heating process (heating rate α=\alpha =1.0 K/s) were simulated. Both electron and hole dopings were found to generally increase the desorption temperatures of hydrogen monomers. Electron doping was found to prevent the diffusion of hydrogen monomers, while the hole doping enhances their diffusion. Macroscopic diffusion of hydrogen monomers on graphene can be achieved when the doping-hole density reaches 5.0×10135.0\times10^{13} cm2^{-2}. The magnetic moment and exchange splitting were found to be reduced by both electron and hole dopings, which was explained by a simple exchange model. The study in this report can further enhance the understanding of the interaction between hydrogen and graphene and is expected to be helpful in the design of hydrogenated-graphene-based devices.Comment: Submitte

    A Fatty Acid Glycoside from a Marine-Derived Fungus Isolated from Mangrove Plant Scyphiphora hydrophyllacea

    Get PDF
    To study the antimicrobial components from the endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea Gaertn. F., a new fatty acid glucoside was isolated by column chromatography from the broth of A1, and its structure was identified as R-3-hydroxyundecanoic acid methylester-3-O-α-l-rhamnopyranoside (1) by spectroscopic methods including 1D and 2D NMR (HMQC, 1H-1H COSY and HMBC) and chemical methods. Antimicrobial assay showed compound 1 possessed modest inhibitory effect on Saphylococcus aureus and methicillin-resistant S. aureus (MRSA) using the filter paper disc agar diffusion method

    Load-Similar Node Distribution for Prolonging Network Lifetime in PMRC-Based Wireless Sensor Networks

    Full text link
    In this paper, the energy hole problem in Progressive Multi-hop Rotational Clustered (PMRC)-based wireless sensor networks (WSNs) is studied. We first analyze the traffic load distribution in PMRC-based WSNs. Based on the analysis, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to solve the energy hole problem in PMRC-based WSNs. Simulation results demonstrate that the load-similar node distribution strategy significantly prolongs network lifetime than uniform node distribution and an existing nonuniform node distribution strategies. The analysis model and the proposed load-similar node distribution strategy have the potential to be applied to other multi-hop WSN structures

    Soybean \u3ci\u3eGm\u3c/i\u3eSAUL1, a Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely through Repressing the Activation of \u3ci\u3eGm\u3c/i\u3eMPK3

    Get PDF
    E3 ubiquitin ligases play important roles in plant immunity, but their role in soybean has not been investigated previously. Here, we used Bean pod mottle virus (BPMV)-mediated virusinduced gene silencing (VIGS) to investigate the function of GmSAUL1 (Senescence-Associated E3 Ubiquitin Ligase 1) homologs in soybean. When two closely related SAUL1 homologs were silenced simultaneously, the soybean plants displayed autoimmune phenotypes, which were significantly alleviated by high temperature, suggesting that GmSAUL1a/1b might be guarded by an R protein. Interestingly, silencing GmSAUL1a/1b resulted in the decreased activation of GmMPK6, but increased activation of GmMPK3 in response to flg22, suggesting that the activation of GmMPK3 is most likely responsible for the activated immunity observed in the GmSAUL1a/1b-silenced plants. Furthermore, we provided evidence that GmSAUL1a is a bona fide E3 ligase. Collectively, our results indicated that GmSAUL1 plays a negative role in regulating cell death and immunity in soybean

    Cardiac Biomarkers Predicting MACE in Patients Undergoing Noncardiac Surgery: A Meta-Analysis

    Get PDF
    Objective: The present meta-analysis was aimed to systematically evaluate the effectiveness and accuracy of brain natriuretic peptide (BNP), cardiac troponin (cTn), high sensitive C reactive protein (hs-CRP) and CRP for predicting postoperative major adverse cardiovascular events (MACE) in patients undergoing noncardiac surgery.Methods: A total of 26 relevant studies with 7,877 participants were collected from five databases, namely PubMed, Embase, China National Knowledge Infrastructure (CNKI), CQVIP and the Wanfang Database until August 10, 2018. And the Review Manager Version 5.3 and Stata/SE 12 software were used for data syntheses in the meta-analysis.Results: Strong relationships of BNP/NT-proBNP, cTnI/cTnT and hs-CRP with MACE were detected in patients undergoing noncardiac surgery, and the five biomarkers all increased the risk of MACE. Compared to normal levels, elevated BNP/NT-proBNP could increase the MACE risk by almost 4-fold [RR:3.92, 95%CI: 3.23–4.75, P < 0.001]; elevated BNP corresponded to a 4.5-fold risk [RR:4.57, 95%CI: 3.37–6.20, P < 0.001]; elevated NT-proBNP led to a 3-fold higher risk [RR:3.48, 95%CI: 2.71–4.46, P < 0.001]. Comparing with normal levels of cTnI/cTnT, increased cTnI/cTnT was associated with nearly 5-fold more higher risk of MACE [RR:5.52, 95%CI: 4.62–6.58, P < 0.001]; elevated cTnI faced a 5-fold risk [RR:5.21, 95%CI: 3.96–6.86, P < 0.001]; elevated cTnT resulted in nearly 6-fold higher risk [RR:5.73, 95%CI: 4.55–7.22, P < 0.001]. The elevation of hs-CRP was associated with nearly 4-fold higher risk of MACE in comparison with normal concentration [RR:3.73, 95%CI: 2.63–5.30, P < 0.001].Conclusion: According to the results of our meta-analysis, the elevations of BNP/NT-proBNP, cTnI/cTnT, and hs-CRP, pre-operation or post-operation immediately, can predict much higher risk of postoperative MACE in patients undergoing noncardiac surgery

    Detection of quantitative trait loci affecting haematological traits in swine via genome scanning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Haematological traits, which consist of mainly three components: leukocyte traits, erythrocyte traits and platelet traits, play extremely important role in animal immune function and disease resistance. But knowledge of the genetic background controlling variability of these traits is very limited, especially in swine.</p> <p>Results</p> <p>In the present study, 18 haematological traits (7 leukocyte traits, 7 erythrocyte traits and 4 platelet traits) were measured in a pig resource population consisting of 368 purebred piglets of three breeds (Landrace, Large White and Songliao Black Pig), after inoculation with the swine fever vaccine when the pigs were 21 days old. A whole-genome scan of QTL for these traits was performed using 206 microsatellite markers covering all 18 autosomes and the X chromosome. Using variance component analysis based on a linear mixed model and the false discovery rate (FDR) test, 35 QTL with FDR < 0.10 were identified: 3 for the leukocyte traits, 28 for the erythrocyte traits, and 4 for the platelet traits. Of the 35 QTL, 25 were significant at <it>FDR </it>< 0.05 level, including 9 significant at <it>FDR </it>< 0.01 level.</p> <p>Conclusions</p> <p>Very few QTL were previously identified for hematological traits of pigs and never in purebred populations. Most of the QTL detected here, in particular the QTL for the platelet traits, have not been reported before. Our results lay important foundation for identifying the causal genes underlying the hematological trait variations in pigs.</p
    corecore