24 research outputs found

    EXPRESSION OF USP22 AND CPC IN ORAL CANCER

    Get PDF
    Oral cancer is a common cancer of the head and neck. Oral squamous cell carcinoma (OSCC) represents almost 90% of the total cases of head and neck cancer. Ubiquitin‑specific protease 22 (USP22) is a deubiquitinating hydrolase, and it is highly expressed in various types of cancer, which also typically have a poor prognosis. Aurora‑B and Survivin, which belong to the chromosomal passenger complex, are also highly expressed in a number of types of cancer. In the present study, USP22 expression and its associations with Aurora‑B and Survivin, and the clinicopathological features in OSCC were explored. USP22 is highly expressed in OSCC. Overexpression of USP22 is associated with lymph node metastasis and histological grade (P<0.01). Additionally, the expression of USP22 was positively associated with Aurora‑B (P<0.01), Survivin (P<0.01), and Ki‑67 (P<0.01). Furthermore, USP22 small interfering RNA inhibited cell growth and reduced the expression levels of Aurora‑B, Survivin and Cyclin B, together with the upregulation of cyclin‑dependent kinase inhibitor 1A (p21). These data suggest that USP22, Aurora‑B and Survivin promote the OSCC development and may represent novel targets for OSCC diagnosis and treatment in the future

    PARP6 acts as a tumor suppressor via downregulating Survivin expression in colorectal cancer

    Get PDF
    Poly (ADP-ribose) polymerases (PARPs) are enzymes that transfer ADP-ribose groups to target proteins and are involved in a variety of biological processes. PARP6 is a novel member, and our previous findings suggest that PARP6 may act as a tumor suppressor via suppressing cell cycle progression. However, it is still unclear that PARP6 function besides growth suppression in colorectal cancer (CRC). In this study, we examined tumor suppressive roles of PAPR6 in CRC cells both in vitro and in vivo. We found that PARP6 inhibited colony formation, invasion and migration as well as cell proliferation. Moreover, ectopic overexpression of PARP6 decreased Survivin expression, which acts as an oncogene and is involved in apoptosis and mitosis. We confirmed the inverse correlation between PARP6 and Survivin expression in CRC cases by immunohistochemistry. Importantly, CRC cases with downregulation of PARP6 and upregulation of Survivin showed poor prognosis. In summary, PARP6 acts as a tumor suppressor via downregulating Survivin expression in CRC. PARP6 can be a novel diagnostic and therapeutic target together with Survivin for CRC

    The oral cancer microbiome contains tumor space–specific and clinicopathology-specific bacteria

    Get PDF
    The crosstalk between the oral microbiome and oral cancer has yet to be characterized. This study recruited 218 patients for clinicopathological data analysis. Multiple types of specimens were collected from 27 patients for 16S rRNA gene sequencing, including 26 saliva, 16 swabs from the surface of tumor tissues, 16 adjacent normal tissues, 22 tumor outer tissue, 22 tumor inner tissues, and 10 lymph nodes. Clinicopathological data showed that the pathogenic bacteria could be frequently detected in the oral cavity of oral cancer patients, which was positively related to diabetes, later T stage of the tumor, and the presence of cervical lymphatic metastasis. Sequencing data revealed that compared with adjacent normal tissues, the microbiome of outer tumor tissues had a greater alpha diversity, with a larger proportion of Fusobacterium, Prevotella, and Porphyromonas, while a smaller proportion of Streptococcus. The space-specific microbiome, comparing outer tumor tissues with inner tumor tissues, suggested minor differences in diversity. However, Fusobacterium, Neisseria, Porphyromonas, and Alloprevotella were more abundant in outer tumor tissues, while Prevotella, Selenomonas, and Parvimonas were enriched in inner tumor tissues. Clinicopathology-specific microbiome analysis found that the diversity was markedly different between negative and positive extranodal extensions, whereas the diversity between different T-stages and N-stages was slightly different. Gemella and Bacillales were enriched in T1/T2-stage patients and the non-lymphatic metastasis group, while Spirochaetae and Flavobacteriia were enriched in the extranodal extension negative group. Taken together, high-throughput DNA sequencing in combination with clinicopathological features facilitated us to characterize special patterns of oral tumor microbiome in different disease developmental stages

    Biochanin A Promotes Proliferation that Involves a Feedback Loop of MicroRNA-375 and Estrogen Receptor Alpha in Breast Cancer Cells

    No full text
    Background: Biochanin A and formononetin are O-methylated isoflavones that are isolated from the root of Astragalus membranaceus, and have antitumorigenic effects. Our previous studies found that formononetin triggered growth-inhibitory and apoptotic activities in MCF-7 breast cancer cells. We performed in vivo and in vitro studies to further investigate the potential effect of biochanin A in promoting cell proliferation in estrogen receptor (ER)-positive cells, and to elucidate underlying mechanisms. Methods: ERα-positive breast cancer cells (T47D, MCF-7) were treated with biochanin A. The MTT assay and flow cytometry were used to assess cell proliferation and apoptosis. mRNA levels of ERα, Bcl-2, and miR-375 were quantified using real-time polymerase chain reaction. Compared with the control, low biochanin A concentrations (2-6 μM) stimulated ERα-positive cell proliferation (T47D, MCF-7). The more sensitive T47D cells were used to study the relevant signaling pathway. Results: After treatment with biochanin A, ERα, miR-375, and Bcl-2 expression was significantly upregulated. Additionally, in the in vivo studies, uterine weight in ovariectomized mice treated with biochanin A increased significantly. Conclusion: This study demonstrated that biochanin A promoted ERα-positive cell proliferation through miR-375 activation and this mechanism is possibly involving in a miR-375 and ERα feedback loop

    Inhibitory Effect of Various Breads on DMH-Induced Aberrant Crypt Foci and Colorectal Tumours in Rats

    Get PDF
    Bread is rich in dietary fibre and many phytochemical compounds, which may influence chemoprevention of colon cancer. In the present study, we evaluated the effect of three kinds of bread on DMH-induced colorectal tumours in F344 rats. F344 rats were divided into four groups (Steinmetz Three-Grain bread, Steinmetz Country bread, White bread, and MF). All groups were injected with 1,2-dimethylhydrazine (DMH, 20 mg/kg body weight) once a week for 8 consecutive weeks from 5 weeks of age. To investigate the antioxidant effect of bread, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging rate of bread and the serum levels of 8-hydroxy-deoxyguanosine (8-OHdG) in rats were examined. The number of colorectal aberrant crypt foci (ACF) and the incidence of colorectal tumours were studied after 34 weeks of DMH treatment. The Steinmetz Three-Grain and Steinmetz Country bread groups had higher scavenging rates of the DPPH free radical and lower serum levels of 8-OHdG and incidence of ACF, adenomas, and adenocarcinomas of colon than the White bread and MF group. Steinmetz Three-Grain bread and Steinmetz Country bread have various ingredient combinations that may inhibit colorectal cancer progression

    Molecular Phylogenesis and Spatiotemporal Spread of SARS-CoV-2 in Southeast Asia

    Get PDF
    &lt;jats:p&gt;&lt;jats:bold&gt;Background:&lt;/jats:bold&gt; The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an unprecedented challenge to public health in Southeast Asia, a tropical region with limited resources. This study aimed to investigate the evolutionary dynamics and spatiotemporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the region.&lt;/jats:p&gt;&lt;jats:p&gt;&lt;jats:bold&gt;Materials and Methods:&lt;/jats:bold&gt; A total of 1491 complete SARS-CoV-2 genome sequences from 10 Southeast Asian countries were downloaded from the Global Initiative on Sharing Avian Influenza Data (GISAID) database on November 17, 2020. The evolutionary relationships were assessed using maximum likelihood (ML) and time-scaled Bayesian phylogenetic analyses, and the phylogenetic clustering was tested using principal component analysis (PCA). The spatial patterns of SARS-CoV-2 spread within Southeast Asia were inferred using the Bayesian stochastic search variable selection (BSSVS) model. The effective population size (Ne) trajectory was inferred using the Bayesian Skygrid model.&lt;/jats:p&gt;&lt;jats:p&gt;&lt;jats:bold&gt;Results:&lt;/jats:bold&gt; Four major clades (including one potentially endemic) were identified based on the maximum clade credibility (MCC) tree. Similar clustering was yielded by PCA; the first three PCs explained 46.9% of the total genomic variations among the samples. The time to the most recent common ancestor (tMRCA) and the evolutionary rate of SARS-CoV-2 circulating in Southeast Asia were estimated to be November 28, 2019 (September 7, 2019 to January 4, 2020) and 1.446 × 10&lt;jats:sup&gt;−3&lt;/jats:sup&gt; (1.292 × 10&lt;jats:sup&gt;−3&lt;/jats:sup&gt; to 1.613 × 10&lt;jats:sup&gt;−3&lt;/jats:sup&gt;) substitutions per site per year, respectively. Singapore and Thailand were the two most probable root positions, with posterior probabilities of 0.549 and 0.413, respectively. There were high-support transmission links (Bayes factors exceeding 1,000) in Singapore, Malaysia, and Indonesia; Malaysia involved the highest number (7) of inferred transmission links within the region. A twice-accelerated viral population expansion, followed by a temporary setback, was inferred during the early stages of the pandemic in Southeast Asia.&lt;/jats:p&gt;&lt;jats:p&gt;&lt;jats:bold&gt;Conclusions:&lt;/jats:bold&gt; With available genomic data, we illustrate the phylogeography and phylodynamics of SARS-CoV-2 circulating in Southeast Asia. Continuous genomic surveillance and enhanced strategic collaboration should be listed as priorities to curb the pandemic, especially for regional communities dominated by developing countries.&lt;/jats:p&gt

    Effects of extremely low-frequency electromagnetic fields (ELF-EMF) exposure on B6C3F1 mice

    No full text
    Long-term exposure study was conducted to investigate the effects of extremely low-frequency electromagnetic field on the tumor promotion process and fertility

    Compound α-keto acid tablet supplementation alleviates chronic kidney disease progression via inhibition of the NF-kB and MAPK pathways

    No full text
    Abstract Background Keto-analogues administration plays an important role in clinical chronic kidney disease (CKD) adjunctive therapy, however previous studies on their reno-protective effect mainly focused on kidney pathological changes induced by nephrectomy. This study was designed to explore the currently understudied alternative mechanisms by which compound α-ketoacid tablets (KA) influenced ischemia–reperfusion (IR) induced murine renal injury, and to probe the current status of KA administration on staving CKD progression in Chinese CKD patients at different stages. Methods In animal experiment, IR surgery was performed to mimic progressive chronic kidney injury, while KA was administrated orally. For clinical research, a retrospective cohort study was conducted to delineate the usage and effects of KA on attenuating CKD exacerbation. End-point CKD event was defined as 50% reduction of initial estimated glomerular filtration rate (eGFR). Kaplan–Meier analysis and COX proportional hazard regression model were adopted to calculate the cumulative probability to reach the end-point and hazard ratio of renal function deterioration. Results In animal study, KA presented a protective effect on IR induced renal injury and fibrosis by attenuating inflammatory infiltration and apoptosis via inhibition of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In clinical research, after adjusting basic demographic factors, patients at stages 4 and 5 in KA group presented a much delayed and slower incidence of eGFR decrease compared to those in No-KA group (hazard ratio (HR) = 0.115, 95% confidence interval (CI) 0.021–0.639, p = 0.0134), demonstrating a positive effect of KA on staving CKD progression. Conclusion KA improved IR induced chronic renal injury and fibrosis, and seemed to be a prospective protective factor in end stage renal disease

    Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis

    No full text
    ABSTRACTMagnitude and diversity of gut microbiota and metabolic systems are critical in shaping human health and diseases, but it remains largely unclear how complex metabolites may selectively regulate gut microbiota and determine health and diseases. Here, we show that failures or compromised effects of anti-TNF-α therapy in inflammatory bowel diseases (IBD) patients were correlated with intestinal dysbacteriosis with more pro-inflammatory bacteria, extensive unresolved inflammation, failed mucosal repairment, and aberrant lipid metabolism, particularly lower levels of palmitoleic acid (POA). Dietary POA repaired gut mucosal barriers, reduced inflammatory cell infiltrations and expressions of TNF-α and IL-6, and improved efficacy of anti-TNF-α therapy in both acute and chronic IBD mouse models. Ex vivo treatment with POA in cultured inflamed colon tissues derived from Crohn’s disease (CD) patients reduced pro-inflammatory signaling/cytokines and conferred appreciable tissue repairment. Mechanistically, POA significantly upregulated the transcriptional signatures of cell division and biosynthetic process of Akkermansia muciniphila, selectively increased the growth and abundance of Akkermansia muciniphila in gut microbiota, and further reprogrammed the composition and structures of gut microbiota. Oral transfer of such POA-reprogrammed, but not control, gut microbiota induced better protection against colitis in anti-TNF-α mAb-treated recipient mice, and co-administration of POA with Akkermansia muciniphila showed significant synergistic protections against colitis in mice. Collectively, this work not only reveals the critical importance of POA as a polyfunctional molecular force to shape the magnitude and diversity of gut microbiota and therefore promote the intestinal homeostasis, but also implicates a new potential therapeutic strategy against intestinal or abenteric inflammatory diseases
    corecore