282 research outputs found

    Preparation of resistant sweet potato starch by steam explosion technology using response surface methodology

    Get PDF
    Purpose: To obtain the optimal conditions and analyze the structure, gelatinization, and digestion characteristics of resistant sweet potato starch prepared by steam explosion (SE) technology.Methods: A response surface method was used to investigate the effects of explosion pressure, pressure-holding time and autoclaving time on digestion resistance of sweet potato starch. The resulting resistant sweet potato starch was identified by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and for in vitro starch digestion rate.Results: The optimum preparation conditions for resistant sweet potato starch were explosion pressure, 2.1 MPa; pressure-holding time, 56 s; and autoclaving time, 26 min. Under these conditions, digestion resistance of sweet potato starch of up to 37.73 ± 0.86 % was obtained. Infra-red spectra indicate that no new chemical groups appeared in the structure of the resistant starch. Furthermore, a gelatinisation induced endothermic peak was observed in the DSC thermogram of potato starch at about 160 °C. The in vitro digestion data showed that the in vitro digestion rate had undergone a significant decrease.Conclusion: Sweet potato starch treated by SE and autoclaving has lower digestibility and therefore, can potentially be used in food or medicine for diabetic patients.Keywords: Resistant sweet potato starch, Steam explosion, Digestion resistance, Starch digestion rate, Response surface methodolog

    Impulsive rotational Raman scattering of N2 by a remote "air laser" in femtosecond laser filament

    Full text link
    We report on experimental realization of impulsive rotational Raman scattering from neutral nitrogen molecules in a femtosecond laser filament using an intense self-induced white-light seeding "air laser" generated during the filamentation of an 800 nm Ti: Sapphire laser in nitrogen gas. The impulsive rotational Raman fingerprint signals are observed with a maximum conversion efficiency of ~0.8%. Our observation provides a promising way of remote identification and location of chemical species in atmosphere by rotational Raman scattering of molecules.Comment: 4 pages, 4 figure

    Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation

    Get PDF
    Objective: Rheumatoid arthritis (RA) is associated with chronic inflammation. The suppression of inflammation is key to the treatment of RA. Glucocorticoids (GCs) are classical anti-inflammatory drugs with several disadvantages such as poor water solubility and low specificity in the body. These disadvantages are the reasons for the quick elimination and side effects of GCs in vivo. Micelles are ideal carriers for GCs delivery to inflamed synovium. We set out to improve the targeting and pharmacokinetic profiles of GCs by preparing a targeting micelle system. Methods: In this study, natural chlosterol (CC) and folic acid (FA) were used to fabricate polysialic acid (PSA) micelles for the targeted delivery of Dexamethasone (Dex). The biodistribution and therapeutic efficacy of the resulting micelles were evaluated in vitro and in vivo. Results: PSA-CC and FA-PSA-CC micelles showed a size below 100 nm and a moderate negative charge. PSA-CC and FA-PSA-CC micelles could also enhance the intracellular uptake of Dex and the suppression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in vitro and in vivo. Arthritis mice showed reduced paw thickness and clinical arthritis index using PSA-CC and FA-PSA-CC micelle treatment. Micellized Dex demonstrated a 4 ∼ 5 fold longer elimination half-life and a 2 ∼ 3 folds higher bioavailability than commercial Dex injection. FA modification significantly improved the anti-inflammatory efficacy of PSA-CC micelles. Conclusion: FA-PSA-CC micelles demonstrated significant advantages in terms of the suppression of inflammation and the treatment of inflammatory arthritis. These reliable and stable micelles possess a high potential to be transferred for clinical use

    Impact of chest pain center quality control indicators on mortality risk in ST-segment elevation myocardial infarction patients: a study based on Killip classification

    Get PDF
    BackgroundDespite the crucial role of Chest pain centers (CPCs) in acute myocardial infarction (AMI) management, China's mortality rate for ST-segment elevation myocardial infarction (STEMI) has remained stagnant. This study evaluates the influence of CPC quality control indicators on mortality risk in STEMI patients receiving primary percutaneous coronary intervention (PPCI) during the COVID-19 pandemic.MethodsA cohort of 664 consecutive STEMI patients undergoing PPCI from 2020 to 2022 was analyzed using Cox proportional hazards regression models. The cohort was stratified by Killip classification at admission (Class 1: n = 402, Class ≥2: n = 262).ResultsAt a median follow-up of 17 months, 35 deaths were recorded. In Class ≥2, longer door-to-balloon (D-to-B) time, PCI informed consent time, catheterization laboratory activation time, and diagnosis-to-loading dose dual antiplatelet therapy (DAPT) time were associated with increased mortality risk. In Class 1, consultation time (notice to arrival) under 10 min reduced death risk. In Class ≥2, PCI informed consent time under 20 min decreased mortality risk.ConclusionCPC quality control metrics affect STEMI mortality based on Killip class. Key factors include time indicators and standardization of CPC management. The study provides guidance for quality care during COVID-19

    A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities

    Get PDF
    It is generally accepted that virus-specific CD8+ cytotoxic T lymphocytes (CTLs) recognize nine-amino acid peptides in conjunction with HLA class I molecules. We recently reported that dengue virus-specific CD8+ CTLs of two different serotype specificities, which were established by stimulation with dengue virus, recognize a single nine-amino acid peptide of the nonstructural protein NS3 of dengue virus type 4 (D4V) in an HLA-B35-restricted fashion. To further analyze the relationships between the serotype specificities of T cells and the amino acid sequence of the recognized peptides, we examined the ability of this viral peptide D4.NS3.500-508 (TPEGIIPTL) to stimulate T lymphocytes of an HLA-B35-positive, dengue virus type 4-immune donor. Peptide stimulation of the PBMC generated dengue virus-specific, HLA-B-35-restricted CD8+ CTL clones. These clones lysed dengue virus-infected autologous cells, as well as autologous target cells pulsed with this peptide. Four patterns of dengue virus serotype specificities were demonstrated on target cells infected with dengue-vaccinia recombinant viruses or pulsed with synthetic peptides corresponding to amino acid sequences of four dengue virus serotypes. Two serotype-specific clones recognized only D4V. Three dengue virus subcomplex-specific clones recognized D1V, D3V, and D4V, and one subcomplex-specific clone recognized D2V and D4V. Three dengue virus serotype-cross-reactive clones recognized D1V-D4V. Thus, a single nine-amino acid peptide induces proliferation of a heterogeneous panel of dengue virus-specific CD8+ CTL clones that are all restricted by HLA-B35 but have a variety of serotype specificities. Peptides that contain a single amino acid substitution at each position of D4.NS3.500-508 were recognized differently by the T cell clones. These results indicate that a single epitope can be recognized by multiple CD8+ CTLs that have a variety of serotype specificities, but the manner of recognition by these multiple CTLs is heterogeneous

    Topical TWEAK Accelerates Healing of Experimental Burn Wounds in Mice

    Get PDF
    The interaction of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor inducible 14 (Fn14) participates in inflammatory responses, fibrosis, and tissue remodeling, which are central in the repair processes of wounds. Fn14 is expressed in main skin cells including dermal fibroblasts. This study was designed to explore the therapeutic effect of TWEAK on experimental burn wounds and the relevant mechanism underlying such function. Third-degree burns were introduced in two BALB/c mouse strains. Recombinant TWEAK was administrated topically, followed by the evaluation of wound areas and histologic changes. Accordingly, the downstream cytokines, inflammatory cell infiltration, and extracellular matrix synthesis were examined in lesional tissue. Moreover, the differentiation markers were analyzed in cultured human dermal fibroblasts upon TWEAK stimulation. The results showed that topical TWEAK accelerated the healing of burn wounds in wild-type mice but not in Fn14-deficient mice. TWEAK strengthened inflammatory cell infiltration, and exaggerated the production of growth factor and extracellular matrix components in wound areas of wild-type mice. Moreover, TWEAK/Fn14 activation elevated the expression of myofibroblastic differentiation markers, including alpha-smooth muscle actin and palladin, in cultured dermal fibroblasts. Therefore, topical TWEAK exhibits therapeutic effect on experimental burn wounds through favoring regional inflammation, cytokine production, and extracellular matrix synthesis. TWEAK/Fn14 activation induces the myofibroblastic differentiation of dermal fibroblasts, partially contributing to the healing of burn wounds
    • …
    corecore