8 research outputs found

    The capability enhancement of aluminium casting process by application of the novel CRIMSON method

    Get PDF
    The conventional foundry not only frequently uses batch melting, where the aluminium alloys are melted and held in a furnace for long time, sometimes as long as a complete shift, but also uses the gravity sand casting process where the molten aluminium alloys are transferred using a ladle from furnace to pour station and are poured into a mould. During the filling of the mould, the turbulent nature of the liquid metal gives rise to massive entrainment of the surface oxide films which are the subsequently trapped into the liquid and act as micro cracks. Also the long exposure time of the liquid surface to the surrounding environment during melting, transferring and filling will increase the level of hydrogen absorption from the atmosphere. The abovementioned factors are often the main reasons for casting defect generation. In this paper the novel CRIMSON aluminium casting method is introduced which has a number of advantages. Instead of gravity filling method, it uses the single shot upcasting method to realize the rapid melting and rapid counter-gravity-filling mould operations which reduce the contact time between the melt and environment thus reducing the possibility of defect generation. Another advantage is the drastic reduction of energy consumption due to shortened melting and filling time. A simulation software, FLOW-3D, is used to compare this new method with the conventional gravity casting process. A tensile bar case is used as a sample to simulate the filling process

    The improvement of aluminium casting process control by application of the new CRIMSON process

    Get PDF
    All The traditional foundry usually not only uses batch melting where the aluminium alloys are melted and held in a furnace for long time, but also uses the gravity filling method in both Sand Casting Process (SCP) and Investment Casting Process (ICP). In the gravity filling operation, the turbulent behaviour of the liquid metal causes substantial entrainment of the surface oxide films which are subsequently trapped into the liquid and generate micro cracks and casting defects. In this paper a new CRIMSON process is introduced which features instead of gravity filling method, using the single shot up-casting method to realize the rapid melting and rapid filling mould operations which reduce the contact time between the melt and environment thus reducing the possibility of defect generation. Another advantage of the new process is the drastic reduction of energy consumption due to shortened melting and filling time. Two types of casting samples from SCP and ICP were compared with the new process. The commercial software was used to simulate the filling and solidification processes of the casting samples. The results show that the new process has a more improved behaviour during filling a mould and solidification than the two conventional casting processes

    Improvements in energy consumption and environmental impact by novel single shot melting process for casting

    Get PDF
    The CRIMSON (Constrained Rapid Induction Melting Single Shot Up-Casting) method uses a rapid induction furnace to melt just enough metal for a single mould rather than bulk melting used in traditional casting process. The molten metal is then transferred to a computer – controlled platform to complete the counter-gravity up filling. The highly controlled metal flow is pushed into the mould to finish the pouring and solidification. In the present paper the energy saving capability of CRIMSON approach is compared with conventional sand casting process. The paper focuses on the energy and resource efficiency optimization of casting stages through simulation and life cycle assessment analysis simulation for proposing alternative means for the better performance of such processes. It is proven that the CRIMSON process can produce high quality castings with higher energy efficiency and lower environmental impact

    The challenges for energy efficient casting processes

    Get PDF
    Casting is one of the oldest, most challenging and energy intensive manufacturing processes. A typical modern casting process contains six different stages, which are classified as melting, alloying, moulding, pouring, solidification and finishing respectively. At each stage, high level and precision of process control is required. The energy efficiency of casting process can be improved by using novel alterations, such as the Constrained Rapid Induction Melting Single Shot Up-casting process. Within the present study the energy consumption of casting processes is analyzed and areas were great savings can be achieved are discussed. Lean thinking is used to identify waste and to analyse the energy saving potential for casting industry

    Simulation based energy and resource efficient casting process chain selection: a case study

    Get PDF
    Casting processes are among the most energy intensive manufacturing processes. A typical modern casting process contains different stages, classified as melting-alloying, moulding, pouring, solidification, fettling, machining and finishing respectively. At each stage, large amounts of energy are consumed. Since a number of different casting processes exist, it is not always straightforward which process chain to select among the available ones. Up to now the selection is based on cost criteria. This paper focuses on the different criteria that needs to be considered and how they can be simulated focusing especially on the energy and resource efficiency of casting stages. A disruptive technology that uses a rapid induction furnace to melt just enough metal for a single mould rather than bulk melting used in traditional processing is proposed and validated

    Comparison of the environmental impact of the CRIMSON process with normal sand casting process

    Get PDF
    The CRIMSON process is an alternative process to conventional casting that can be used for small to medium batch sizes. The aim of this process are to improve the casting quality and reduce the energy consumption within light-metal casting industry. Nowadays, the energy efficiency becomes more and more important. This is not only about the cost of the production, but also about the environmental effect. In this paper, the CRIMSON process will be compared with the conventional sand casting process. The Life cycle assessment (LCA) method will be used to assess the environmental impact of both casting processes

    Reduction of Energy Consumption and GHGs Emission in Conventional Sand Casting Process by Application of a New CRIMSON Process

    Get PDF
    In conventional foundry, engineers generally consider the quality of casting part as the most essential issue and regard the energy consumption and Green House Gas (GHGs) emission as the auxiliary ones. This usually causes large amount of energy consumption as a result of the inefficient casting processes used and increases the production costs and environmental pollution. This paper presents the new CRIMSON process where its facility and melting process were compared with conventional melt furnaces and aluminium alloy melting process. An actual case was investigated to reveal quantitatively how the conventional foundry wastes energy and increases GHGs emission, and what the improvement of energy efficiency and the GHGs emission reduction can be achieved using the new CRIMSON process. The results of this investigation will help the foundry engineer recognize the importance of energy saving and environmental protection and show how to utilise this new process to reduce production costs and carbon footprint without decreasing the quality of the cast part
    corecore