1,783 research outputs found

    Ground-State Decay Rate for the Zener Breakdown in Band and Mott Insulators

    Full text link
    Non-linear transport of electrons in strong electric fields, as typified by dielectric breakdown, is re-formulated in terms of the ground-state decay rate originally studied by Schwinger in non-linear QED. We discuss the effect of electron interaction on Zener tunneling by comparing the dielectric breakdown of the band insulator and the Mott insulator, where the latter is studied by the time-dependent density-matrix renormalization group (DMRG). The relation with the Berry's phase theory of polarization is also established.Comment: 5 pages 2 figures, revised text, version to appear in Phys. Rev. Let

    Thermoelastic Damping in Micro- and Nano-Mechanical Systems

    Get PDF
    The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometer- and nanometer-scale electro-mechanical systems (MEMS and NEMS). The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener's well-known approximation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.Comment: 10 pages. Submitted to Phys. Rev.

    Electronic Phase Separation in Manganite/Insulator Interfaces

    Full text link
    By using a realist microscopic model, we study the electric and magnetic properties of the interface between a half metallic manganite and an insulator. We find that the lack of carriers at the interface debilitates the double exchange mechanism, weakening the ferromagnetic coupling between the Mn ions. In this situation the ferromagnetic order of the Mn spins near the interface is unstable against antiferromagnetic CE correlations, and a separation between ferromagnetic/metallic and antiferromagnetic/insulator phases at the interfaces can occur. We obtain that the insertion of extra layers of undoped manganite at the interface introduces extra carriers which reinforce the double exchange mechanism and suppress antiferromagnetic instabilities.Comment: 8 pages, 7 figures include

    A new Bloch period for interacting cold atoms in 1D optical lattices

    Full text link
    The paper studies Bloch oscillations of ultracold atoms in optical lattice in the presence of atom-atom interaction. A new, interaction-induced Bloch period is identified. The analytical results are corroborated by realistic numerical calculations.Comment: revtex4, 4 pages, 4 figures, gzipped tar fil

    Sensitive measurement of forces at micron scale using Bloch oscillations of ultracold atoms

    Full text link
    We show that Bloch oscillations of ultracold fermionic atoms in the periodic potential of an optical lattice can be used for a sensitive measurement of forces at the micrometer length scale, e.g. in the vicinity of dielectric surface. In particular, the proposed approach allows to perform a local and direct measurement of the Casimir-Polder force which is, for realistic experimental parameters, as large as 10^-4 gravity

    Effect of magnetic state on the γ−α\gamma -\alpha transition in iron: First-principle calculations of the Bain transformation path

    Full text link
    Energetics of the fcc (γ\gamma) - bcc (α\alpha) lattice transformation by the Bain tetragonal deformation is calculated for both magnetically ordered and paramagnetic (disordered local moment) states of iron. The first-principle computational results manifest a relevance of the magnetic order in a scenario of the γ\gamma - α\alpha transition and reveal a special role of the Curie temperature of α\alpha-Fe, TCT_C, where a character of the transformation is changed. At a cooling down to the temperatures T<TCT < T_C one can expect that the transformation is developed as a lattice instability whereas for T>TCT > T_C it follows a standard mechanism of creation and growth of an embryo of the new phase. It explains a closeness of TCT_C to the temperature of start of the martensitic transformation, MsM_s.Comment: 4 pages, 3 figures, submitted in Phys. Rev. Letter

    Observation of dynamical instability for a Bose-Einstein condensate in a moving 1D optical lattice

    Full text link
    We have experimentally studied the unstable dynamics of a harmonically trapped Bose-Einstein condensate loaded into a 1D moving optical lattice. The lifetime of the condensate in such a potential exhibits a dramatic dependence on the quasimomentum state. This is unambiguously attributed to the onset of dynamical instability, after a comparison with the predictions of the Gross-Pitaevskii theory. Deeply in the unstable region we observe the rapid appearance of complex structures in the atomic density profile, as a consequence of the condensate phase uniformity breakdown

    Phase Diagram of Half Doped Manganites

    Full text link
    An analysis of the properties of half-doped manganites is presented. We build up the phase diagram of the system combining a realistic calculation of the electronic properties and a mean field treatment of the temperature effects. The electronic structure of the manganites are described with a double exchange model with cooperative Jahn-Teller phonons and antiferromagnetic coupling between the MnMn core spins. At zero temperature a variety of electronic phases as ferromagnetic (FM) charge ordered (CO) orbital ordered (OO), CE-CO-OO and FM metallic, are obtained. By raising the temperature the CE-CO-OO phase becomes paramagnetic (PM), but depending on the electron-phonon coupling and the exchange coupling the transition can be direct or trough intermediate states: a FM disorder metallic, a PM-CO-OO or a FM-CO-OO. We also discus the nature of the high temperature PM phase in the regime of finite electron phonon coupling. In this regime half of the oxygen octahedra surrounding the MnMn ions are distorted. In the weak coupling regime the octahedra are slightly deformed and only trap a small amount of electronic charge, rendering the system metallic consequentially. However in the strong coupling regime the octahedra are strongly distorted, the charge is fully localized in polarons and the system is insulator.Comment: 10 pagses, 9 figures include

    Quantum Tunneling of Magnetization in Single Molecular Magnets Coupled to Ferromagnetic Reservoirs

    Full text link
    The role of spin polarized reservoirs in quantum tunneling of magnetization and relaxation processes in a single molecular magnet (SMM) is investigated theoretically. The SMM is exchange-coupled to the reservoirs and also subjected to a magnetic field varying in time, which enables the quantum tunneling of magnetization (QTM). The spin relaxation times are calculated from the Fermi golden rule. The exchange interaction with tunneling electrons is shown to affect the spin reversal due to QTM. Furthermore, it is shown that the switching is associated with transfer of a certain charge between the leads.Comment: 5 pages, 3 EPS figures, final version as publishe

    Disorder-Induced First Order Transition and Curie Temperature Lowering in Ferromagnatic Manganites

    Full text link
    We study the effect that size disorder in the cations surrounding manganese ions has on the magnetic properties of manganites. This disorder is mimic with a proper distribution of spatially disordered Manganese energies. Both, the Curie temperature and the order of the transition are strongly affected by disorder. For moderate disorder the Curie temperature decreases linearly with the the variance of the distribution of the manganese site energies, and for a disorder comparable to that present in real materials the transition becomes first order. Our results provide a theoretical framework to understand disorder effects on the magnetic behavior of manganites.Comment: 4 pages, three figures include
    • …
    corecore