5 research outputs found

    Ozonation and Depolymerization of Extracellular Polymeric Substances (EPS) Extracted from a Biofilter Treating Gaseous Toluene

    No full text
    Low-concentration ozonation was developed as a novel technique to control the excess biomass in volatile organic compound (VOC) biofilters. In order to understand the reaction mechanism between ozone and biomass, the changes in properties of ozone exposed extracellular polymeric substances (EPS) were investigated in this study. EPS was sequestered from the biofilm, obtained from a biofilter treating gaseous toluene, and then it was exposed to gaseous ozone at 272 ± 22 ppm continuously for 12 h. The total organic carbon (TOC) results indicated that low concentration ozone could not mineralize the EPS to carbon dioxide (CO2) completely. The excitation-emission matrix fluorescence spectroscopy (EEM) results demonstrated that ozone preferred to attack the benzene ring and specific amino acid residues (such as tryptophan) on the protein chain. High performance size-exclusion chromatography (HPSEC) results confirmed that the protein molecules were depolymerized after ozone attack, while the molecular weight of polysaccharides was not much affected by ozone. During ozonation, few volatile organic compounds (VOCs), such as carboxylic acids, aldehydes, ketones, benzaldehyde and by-products of toluene, were generated, which confirms a minor change in the TOC concentration of EPS. Results revealed that low concentration ozone can reduce the molecular weight of biofilter EPS which can be a key reason for controlling biomass accumulation. Additionally, this can be used to study the composition of biofilm EPS from biofilters

    Progress in the development and use of refrigerants and unintended environmental consequences

    No full text
    The world has entered into the ā€œfourth-generationā€ of refrigerants, and it is an undeniable fact that we will continue to encounter several issues in identifying a suitable refrigerant that suits the purpose and poses no harm to the environment. The ever-changing regulations on the use of refrigerants have often posed great challenges to the refrigeration industry and there is a pressing need to develop new refrigerants and develop better equipment to use them. Theoretically, an ideal refrigerant should possess characteristics such as low-global warming potential (GWP), non-toxic, nonflammable, and zero-ozone depletion potential (ODP). In addition, the refrigerants are also expected to have excellent thermodynamic and thermophysical properties. Many new synthetic refrigerants have been reported as alternative refrigerants and have very low atmospheric life as well as low GWP and zero-ODP. However, it is irrefutable that most of the studies that reported the so-called new refrigerants are actually not new. From the invention of R-12 (Dichlorodifluoromethane) in 1930s to the invention of R-1234yf in 2000s, these substances are available for decades even before being recognized as refrigerants. This review attempts to provide chronicles on different aspects of refrigerants such as their progress since their invention in the early 1800s, classification and properties. In addition, concepts such as issues associated with the long-term use of refrigerants, barriers for the inclusion of low-GWP refrigerants, various protocols and accords that have occurred since the inception of refrigerants are also critically discussed

    Citrate-Capped AuNP Fabrication, Characterization and Comparison with Commercially Produced Nanoparticles

    No full text
    Gold nanoparticles (AuNPs) were synthesized using citrate reduction, also known as the Turkevich method. The AuNPs were compared with the commercially available product and later subjected to characterization. The AuNPs were 13 nm in diameter with a 2.7 × 108 M−1cm−1 extension coefficient. The calculated concentration was 5.1 nM through the Beer–Lambert law using UV–vis absorbance spectra. Further detailed characterization was applied, such as scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), elemental analysis using electro and DLS instruments, energy-dispersive X-ray spectroscopy (EDS), XRD, and Zeta potential. The synthesized AuNPs had a higher UV-absorbance peak of 0.93 in comparison to commercially available nanoparticles at 5.8 identical conditions. The characterization confirmed successful fabrication of colloidal-citrate-capped AuNPs and their dispersed and aggregated state with induced salt concentration. The shape and morphology were confirmed through XRD, showing a face-centered cubic lattice of {111}, confirmed at 38.1 round shape, and a crystalline lattice. AuNPs tend to be applied in sensing, detection, drug delivery, pharmaceuticals, and other applications in the environment and materials. Other applications include environmental contaminant detection, colorimetric sensors, antimicrobial applications, biosensing and drug delivery, tissue engineering, nanomedicines, optoelectronics, and catalysts

    Citrate-Capped AuNP Fabrication, Characterization and Comparison with Commercially Produced Nanoparticles

    No full text
    Gold nanoparticles (AuNPs) were synthesized using citrate reduction, also known as the Turkevich method. The AuNPs were compared with the commercially available product and later subjected to characterization. The AuNPs were 13 nm in diameter with a 2.7 Ɨ 108 Māˆ’1cmāˆ’1 extension coefficient. The calculated concentration was 5.1 nM through the Beerā€“Lambert law using UVā€“vis absorbance spectra. Further detailed characterization was applied, such as scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), elemental analysis using electro and DLS instruments, energy-dispersive X-ray spectroscopy (EDS), XRD, and Zeta potential. The synthesized AuNPs had a higher UV-absorbance peak of 0.93 in comparison to commercially available nanoparticles at 5.8 identical conditions. The characterization confirmed successful fabrication of colloidal-citrate-capped AuNPs and their dispersed and aggregated state with induced salt concentration. The shape and morphology were confirmed through XRD, showing a face-centered cubic lattice of {111}, confirmed at 38.1 round shape, and a crystalline lattice. AuNPs tend to be applied in sensing, detection, drug delivery, pharmaceuticals, and other applications in the environment and materials. Other applications include environmental contaminant detection, colorimetric sensors, antimicrobial applications, biosensing and drug delivery, tissue engineering, nanomedicines, optoelectronics, and catalysts
    corecore