163 research outputs found
Energy Management Policies for Energy-Neutral Source-Channel Coding
In cyber-physical systems where sensors measure the temporal evolution of a
given phenomenon of interest and radio communication takes place over short
distances, the energy spent for source acquisition and compression may be
comparable with that used for transmission. Additionally, in order to avoid
limited lifetime issues, sensors may be powered via energy harvesting and thus
collect all the energy they need from the environment. This work addresses the
problem of energy allocation over source acquisition/compression and
transmission for energy-harvesting sensors. At first, focusing on a
single-sensor, energy management policies are identified that guarantee a
maximal average distortion while at the same time ensuring the stability of the
queue connecting source and channel encoders. It is shown that the identified
class of policies is optimal in the sense that it stabilizes the queue whenever
this is feasible by any other technique that satisfies the same average
distortion constraint. Moreover, this class of policies performs an independent
resource optimization for the source and channel encoders. Analog transmission
techniques as well as suboptimal strategies that do not use the energy buffer
(battery) or use it only for adapting either source or channel encoder energy
allocation are also studied for performance comparison. The problem of
optimizing the desired trade-off between average distortion and delay is then
formulated and solved via dynamic programming tools. Finally, a system with
multiple sensors is considered and time-division scheduling strategies are
derived that are able to maintain the stability of all data queues and to meet
the average distortion constraints at all sensors whenever it is feasible.Comment: Submitted to IEEE Transactions on Communications in March 2011; last
update in July 201
Time- and Frequency-Varying -Factor of Non-Stationary Vehicular Channels for Safety Relevant Scenarios
Vehicular communication channels are characterized by a non-stationary time-
and frequency-selective fading process due to fast changes in the environment.
We characterize the distribution of the envelope of the first delay bin in
vehicle-to-vehicle channels by means of its Rician -factor. We analyze the
time-frequency variability of this channel parameter using vehicular channel
measurements at 5.6 GHz with a bandwidth of 240 MHz for safety-relevant
scenarios in intelligent transportation systems (ITS). This data enables a
frequency-variability analysis from an IEEE 802.11p system point of view, which
uses 10 MHz channels. We show that the small-scale fading of the envelope of
the first delay bin is Ricean distributed with a varying -factor. The later
delay bins are Rayleigh distributed. We demonstrate that the -factor cannot
be assumed to be constant in time and frequency. The causes of these variations
are the frequency-varying antenna radiation patterns as well as the
time-varying number of active scatterers, and the effects of vegetation. We
also present a simple but accurate bi-modal Gaussian mixture model, that allows
to capture the -factor variability in time for safety-relevant ITS
scenarios.Comment: 26 pages, 12 figures, submitted to IEEE Transactions on Intelligent
Transportation Systems for possible publicatio
In-vehicle channel sounding in the 5.8-GHz band
The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments.The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments
Minimum-Energy Bandlimited Time-Variant Channel Prediction with Dynamic Subspace Selection
In current cellular communication systems the time-selective fading process is highly oversampled. We exploit this fact for time-variant flat-fading channel prediction by using dynamically selected predefined low dimensional subspaces spanned by discrete prolate spheroidal (DPS) sequences. The DPS sequences in each subspace exhibit a subspace-specific bandwidth matched to a certain Doppler frequency range. Additionally, DPS sequences are most energy concentrated in a time interval matched to the channel observation interval. Both properties enable the application of DPS sequences for minimum-energy (ME) bandlimited prediction. The dimensions of the predefined subspaces are in the range from one to five for practical communication systems. The subspace used for ME bandlimited prediction is selected based on a probabilistic bound on the reconstruction error. By contrast, time-variant channel prediction based on non-orthogonal complex exponential basis functions needs Doppler frequency estimates for each propagation path which requires high computational complexity. We compare the performance of this technique under the assumption of perfectly known complex exponentials with that of ME bandlimited prediction augmented with dynamic subspace selection. In particular we analyze the mean square prediction error of the two schemes versus the number of discrete propagation paths
- …