135 research outputs found
Alaska mining and water quality
The Institute of Water Resources has sought financial assistance
for some time in an attempt to initiate research relative to the impact
of mining on water quality. Attempts were made as early as 1971 by Dr.
Timothy Tilsworth and later by Dr. Donald Cook and Dr. Sage Murphy.
These investigators anticipated growth in placer gold mining and the
development of natural resources in Alaska during a period of national
and environmental concern. The subsequent energy "crisis," the major
increase in the price of gold on the world market, and dwindling nonrenewable
resource supplies have resulted in large-scale mineral
exploration in Alaska. This exploration, coupled with development of
the trans-Alaska oil pipeline, has attracted considerable capital for
potential investment and development in Alaska. Expected industrial
growth has already started and major new projects are "just around the
corner."
Yet, as of 1976, no major research effort has occurred to determine
the extent of or potential for water quality impacts from mining operations
in Alaska. Recently a series of interdisciplinary research projects
have been completed in Canada; however, the application of Canadian data
to Alaskan problems is uncertain. Although, state and federal government
agencies have been advised and are aware of this potential problem
and lack of baseline data they have not sought out new information or
rational solutions. Even now, with deadlines of Public Law 92-500 at
hand, some regulatory agencies give the impression of attempting to
ignore the situation. Interim limitations are proposed and permits
are issued with no discernible rationale or basis. Data have not been
obtained relative to the Alaskan mining operations and thus are not
available for use in seeking solutions compatible with mining and environmental protection. Numbers appear to have been arbitrarily
assigned to permits and water quality standards. When permits are
issued, self-monitoring requirements are negligible or nonexistent.
Nor have regulatory agencies demonstrated the ability or inclination
to monitor mining operations or enforce permits and water quality
standards.
It was hoped that the project would bring together miners, environmentalists, and regulators in a cooperative effort to identify the
problems and seek solutions. The investigators recognized the political
sensitivity of the subject matter but proceeded optimistically.
Relatively good cooperation, though not total, occurred early in the
project. In April 1976, a symposium was held to exchange ideas and
determine the state-of-the-art. Although the symposium had good
attendance and an exchange of information occurred, the symposium
itself was somewhat of a disappointment. With few exceptions, the
participants aligned on one side or the other in preconceived fixed
positions. Some even chose not to attend and were therefore able to
avoid the issues. Little hard data was presented.
Optimistically, some of the miners, environmentalists, and
regulators are prepared to resolve their differences. This report,
hopefully, will be of benefit to them. It is our experience that
miners and environmentalists share a love of the land that is uniquely
Alaska. We feel that technology is available for application to this
problem for those who care about doing the job right in the "last
frontier." Whether or not it will be effectively applied to protect
Alaska's water resources is a question which remains unanswered.The work upon which this report is based was supported in part by
funds provided by the United States Department of the Interior, Office
of Water Resources Research Act of 1964, Public Law 88-379, as amended
(Project A-055-ALAS)
Cold climate water/wastewater transportation and treatment - a bibliography: completion report
This bibliography contains 1,400 citations, including published and unpublished papers, on cold-climate water and wastewater transportation and treatment systems. Sources listed include state and federal agency files which contain information on systems in Alaskan communities and
the Alyeska Pipeline Service Company camps. References to systems in other northern countries are also included.
The objectives of this study were to identify causes of the failure of Alaskan water and wastewater treatment and transportation facilities and to seek methods for design improvements. Originally, the investigators contemplated an evaluation of systems performance in remote areas
in relation to the original conception, planning, design, and construction.
Because of the tremendous amount of literature examined, the evaluation was undertaken in a subsequent study, "Alaska Wastewater Treatment Technology" (A-058-ALAS) by Dr. Ronald A. Johnson.OWRT AGREEMENT NO. 14-31-0001-5002
PROJECT NO. A-047-ALAS The work upon which this completion report is based was supported by funds provided by the U. S. Department of the Interior, Office of Water
Research and Technology, as authorized under the Water Resources Research
Act of 1964, Public Law 88-379, as amended
Thermodynamic Entropy And The Accessible States of Some Simple Systems
Comparison of the thermodynamic entropy with Boltzmann's principle shows that
under conditions of constant volume the total number of arrangements in simple
thermodynamic systems with temperature-independent heat capacities is TC/k. A
physical interpretation of this function is given for three such systems; an
ideal monatomic gas, an ideal gas of diatomic molecules with rotational motion,
and a solid in the Dulong-Petit limit of high temperature. T1/2 emerges as a
natural measure of the number of accessible states for a single particle in one
dimension. Extension to N particles in three dimensions leads to TC/k as the
total number of possible arrangements or microstates. The different microstates
of the system are thus shown a posteriori to be equally probable, with
probability T-C/k, which implies that for the purposes of counting states the
particles of the gas are distinguishable. The most probable energy state of the
system is determined by the degeneracy of the microstates.Comment: 9 pages, 1 figur
Critical behavior of Born Infeld AdS black holes in higher dimensions
Based on a canonical framework, we investigate the critical behavior of
Born-Infeld AdS black holes in higher dimensions. As a special case,
considering the appropriate limit, we also analyze the critical phenomena for
Reissner Nordstrom AdS black holes. The critical points are marked by the
divergences in the heat capacity at constant charge. The static critical
exponents associated with various thermodynamic entities are computed and shown
to satisfy the thermodynamic scaling laws. These scaling laws have also been
found to be compatible with the static scaling hypothesis. Furthermore, we show
that the values of these exponents are universal and do not depend on the
spatial dimensionality of the AdS space. We also provide a suggestive way to
calculate the critical exponents associated with the spatial correlation which
satisfy the scaling laws of second kind.Comment: LaTex, 22 pages, 12 figures, minor modifications in text, To appear
in Phys. Rev.
Ehrenfest's scheme and thermodynamic geometry in Born-Infeld AdS black holes
In this paper we analyze the phase transition phenomena in Born-Infeld AdS
black holes using Ehrenfest's scheme of standard thermodynamics. The critical
points are marked by the divergences in the heat capacity. In order to
investigate the nature of the phase transition, we analytically check both the
Ehrenfest's equations near the critical points. Our analysis reveals that this
is indeed a second order phase transition. Finally, we analyze the nature of
the phase transition using state space geometry approach. This is found to be
compatible with the Ehrenfest's scheme.Comment: Published versio
Effective thermodynamics of strongly coupled qubits
Interactions between a quantum system and its environment at low temperatures
can lead to violations of thermal laws for the system. The source of these
violations is the entanglement between system and environment, which prevents
the system from entering into a thermal state. On the other hand, for two-state
systems, we show that one can define an effective temperature, placing the
system into a `pseudo-thermal' state where effective thermal laws are upheld.
We then numerically explore these assertions for an n-state system inspired by
the spin-boson environment.Comment: 9 pages, 3 figure
Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine
A nanoscale-sized Stirling engine with an atomistic working fluid has been
modeled using molecular dynamics simulation. The design includes heat
exchangers based on thermostats, pistons attached to a flywheel under load, and
a regenerator. Key aspects of the behavior, including the time-dependent flows,
are described. The model is shown to be capable of stable operation while
producing net work at a moderate level of efficiency.Comment: 4 pages, 8 figures (minor changes
Carnot cycle for an oscillator
Carnot established in 1824 that the efficiency of cyclic engines operating
between a hot bath at absolute temperature and a bath at a lower
temperature cannot exceed . We show that linear
oscillators alternately in contact with hot and cold baths obey this principle
in the quantum as well as in the classical regime. The expression of the work
performed is derived from a simple prescription. Reversible and non-reversible
cycles are illustrated. The paper begins with historical considerations and is
essentially self-contained.Comment: 19 pages, 3 figures, sumitted to European Journal of Physics Changed
content: Fluctuations are considere
Ideal gas sources for the Lemaitre-Tolman-Bondi metrics
New exact solutions emerge by replacing the dust source of the
Lem\^aitre-Tolman-Bondi metrics with a viscous fluid satisfying the monatomic
gas equation of state. The solutions have a consistent thermodynamical
interpretation. The most general transport equation of Extended Irreversible
Thermodynamics is satisfied, with phenomenological coefficients bearing a close
resemblance to those characterizing a non relativistic Maxwell-Bolzmann gas.Comment: 7 pages, Plain TeX with IOP macros, important corrections to previous
version, 3 figures (to appear in Classical and Quantum Gravity, June 1998
Thermodynamics of phase transition in higher dimensional AdS black holes
We investigate the thermodynamics of phase transition for
dimensional Reissner Nordstrom (RN)-AdS black holes using a grand canonical
ensemble. This phase transition is characterized by a discontinuity in specific
heat. The phase transition occurs from a lower mass black hole with negative
specific heat to a higher mass black hole with positive specific heat. By
exploring Ehrenfest's scheme we show that this is a second order phase
transition. Explicit expressions for the critical temperature and critical mass
are derived. In appropriate limits the results for dimensional
Schwarzschild AdS black holes are obtained.Comment: LaTex, 11 pages, 5 figures, To appear in JHE
- …