427 research outputs found

    Three-body decays: structure, decay mechanism and fragment properties

    Full text link
    We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed α\alpha-particle energy distribution after the decay of 12C(1^+) resonance at 12.7 MeV.Comment: 4 pages, 3 figures. Proceedings of the workshop "Critical Stability of Few-Body Quantum Systems" 200

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Comparison of Isoscalar Vector Meson Production Cross Sections in Proton-Proton Collisions

    Get PDF
    The reaction pp→ppω pp\to pp\bf \omega was investigated with the TOF spectrometer, which is an external experiment at the accelerator COSY (Forschungszentrum J\"ulich, Germany). Total as well as differential cross sections were determined at an excess energy of 93MeV93 MeV (pbeam=2950MeV/cp_{beam}=2950 MeV/c). Using the total cross section of (9.0±0.7±1.1)ÎŒb(9.0\pm 0.7 \pm1.1) \mu b for the reaction pp→ppω pp\to pp\omega determined here and existing data for the reaction pp→ppϕpp\to pp\bf \phi, the ratio Rϕ/ω=σϕ/σω\mathcal{R}_{\phi/\omega}=\sigma_\phi/\sigma_\omega turns out to be significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The uncertainty of this ratio is considerably smaller than in previous determinations. The differential distributions show that the ω\omega production is still dominated by S-wave production at this excess energy, however higher partial waves clearly contribute. A comparison of the measured angular distributions for ω\omega production to published distributions for ϕ\phi production at 83MeV83 MeV shows that the data are consistent with an identical production mechanism for both vector mesons

    Strong rescattering in K-> 3pi decays and low-energy meson dynamics

    Full text link
    We present a consistent analysis of final state interactions in K→3π{K\rightarrow 3\pi} decays in the framework of Chiral Perturbation Theory. The result is that the kinematical dependence of the rescattering phases cannot be neglected. The possibility of extracting the phase shifts from future KS−KLK_S-K_L interference experiments is also analyzed.Comment: 14 pages in RevTex, 3 figures in postscrip

    Nuclear structure corrections in the energy spectra of electronic and muonic deuterium

    Get PDF
    The one-loop nuclear structure corrections of order (Z alpha)^5 to the Lamb shift and hyperfine splitting of the deuterium are calculated. The contribution of the deuteron structure effects to the isotope shift (ep)-(ed), (mu p)-(mu d) in the interval (1S - 2S) is obtained on the basis of modern experimental data on the deuteron electromagnetic form factors. The comparison with the similar contributions to the Lamb shift for electronic and muonic hydrogen shows, that the relative contribution due to the nucleus structure increases when passing from the hydrogen to the deuterium.Comment: Talk presented at the Conference "Physics of Fundamental Interactions" of the Nuclear Physics Section of the Physics Department of RAS, ITEP, Moscow, 2-6 December, 2002; 8 pages, REVTE

    Energy-Charge Correlation in the π+π−π0\pi^+\pi^-\pi^0 Decay of KLK_L and of Tagged Neutral Kaons

    Full text link
    We relate the asymmetries in the charged pions energy in the decay into π+π−π0\pi^+\pi^-\pi^0 of KLK_L and of the tagged neutral kaons. The former asymmetry is a given combination of ℜ(Ï”)\Re(\epsilon), ℑ(Ï”)\Im(\epsilon), and âˆŁÏ”â€Č∣|\epsilon'|. Moreover, the non-violating CP asymmetry allows a test for the χ\chiPT predictions within the Zel'dovich approach for the final state interaction.Comment: 15 A4-pages LaTeX + 2 figures (available in hard copies from the authors upon request to [email protected]), preprint DSF-93/52, SUHEP-58

    Muonic hydrogen ground state hyperfine splitting

    Full text link
    Corrections of orders alpha^5, alpha^6 are calculated in the hyperfine splitting of the muonic hydrogen ground state. The nuclear structure effects are taken into account in the one- and two-loop Feynman amplitudes by means of the proton electromagnetic form factors. The modification of the hyperfine splitting part of the Breit potential due to the electron vacuum polarization is considered. Total numerical value of the 1S state hyperfine splitting 182.638 meV in the (mu p) can play the role of proper estimation for the corresponding experiment with the accuracy 30 ppm.Comment: 18 pages, Talk presented at the 11th Lomonosov Conference on Elementary Particle Physics, Moscow State University, August 200

    Proton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen

    Full text link
    While measurements of the hyperfine structure of hydrogen-like atoms are traditionally regarded as test of bound-state QED, we assume that theoretical QED predictions are accurate and discuss the information about the electromagnetic structure of protons that could be extracted from the experimental values of the ground state hyperfine splitting in hydrogen and muonic hydrogen. Using recent theoretical results on the proton polarizability effects and the experimental hydrogen hyperfine splitting we obtain for the Zemach radius of the proton the value 1.040(16) fm. We compare it to the various theoretical estimates the uncertainty of which is shown to be larger that 0.016 fm. This point of view gives quite convincing arguments in support of projects to measure the hyperfine splitting of muonic hydrogen.Comment: Submitted to Phys. Rev.

    Higher-Order Nuclear-Polarizability Corrections in Atomic Hydrogen

    Get PDF
    Nuclear-polarizability corrections that go beyond unretarded-dipole approximation are calculated analytically for hydrogenic (atomic) S-states. These retardation corrections are evaluated numerically for deuterium and contribute -0.68 kHz, for a total polarization correction of 18.58(7) kHz. Our results are in agreement with one previous numerical calculation, and the retardation corrections completely account for the difference between two previous calculations. The uncertainty in the deuterium polarizability correction is substantially reduced. At the level of 0.01 kHz for deuterium, only three primary nuclear observables contribute: the electric polarizability, αE\alpha_E, the paramagnetic susceptibility, ÎČM\beta_M, and the third Zemach moment, (2)_{(2)}. Cartesian multipole decomposition of the virtual Compton amplitude and its concomitant gauge sum rules are used in the analysis.Comment: 26 pages, latex, 1 figure -- Submitted to Phys. Rev. C -- epsfig.sty require

    Theory of muonic hydrogen - muonic deuterium isotope shift

    Full text link
    We calculate the corrections of orders alpha^3, alpha^4 and alpha^5 to the Lamb shift of the 1S and 2S energy levels of muonic hydrogen (mu p) and muonic deuterium (mu d). The nuclear structure effects are taken into account in terms of the proton r_p and deuteron r_d charge radii for the one-photon interaction and by means of the proton and deuteron electromagnetic form factors in the case of one-loop amplitudes. The obtained numerical value of the isotope shift (mu d) - (mu p) for the splitting (1S-2S) 101003.3495 meV can be considered as a reliable estimation for corresponding experiment with the accuracy 10^{-6}. The fine structure interval E(1S)-8E(2S) in muonic hydrogen and muonic deuterium are calculated.Comment: 22 pages, 7 figure
    • 

    corecore