41 research outputs found

    The mechanism of Fe-rich intermetallic compound formation and growth on inoculants revealed by electron backscattered diffraction and X-ray imaging

    Get PDF
    Fe-rich intermetallics affect critically the mechanical properties and recyclability of aluminium alloys. Increasing effort has been spent on the inoculation of these intermetallics, hoping to promote a finer distribution. Recently Al-5Ti-1B (wt.%), originally developed to refine -Al, has been shown to refine Al13Fe4, an intermetallic phase present in a variety of Al alloys. However, mechanisms of the formation and growth of the intermetallics on the inoculants are unclear. In this paper, Ti is added to Fe-containing Al alloys to produce a large number of potent Al3Ti particles, the active inoculant in Al-5Ti-1B. We use a combination of electron backscattered diffraction, in situ synchrotron X-ray radiography and post-solidification X-ray computed tomography to investigate the formation and growth of primary Al13Fe4 on Al3Ti inoculants, first in a model Al-Fe alloy, with key insights then confirmed in a high Fe-containing, recycled 6xxx alloy. Crystallographic orientation relationships between Al13Fe4 and Al3Ti are analysed comprehensively, and the formation and growth dynamics of Al13Fe4 on Al3Ti is also unveiled. A strong link is revealed between the formation of Al13Fe4 on Al3Ti and a twinning-related pseudo-symmetry of Al13Fe4. Finally, a potential strategy to refine both intermetallics and -Al in recycled alloys with elevated Fe concentration is proposed

    Support Loss and Q Factor Enhancement for a Rocking Mass Microgyroscope

    Get PDF
    A rocking mass gyroscope (RMG) is a kind of vibrating mass gyroscope with high sensitivity, whose driving mode and sensing mode are completely uniform. MEMS RMG devices are a research hotspot now because they have the potential to be used in space applications. Support loss is the dominant energy loss mechanism influencing their high sensitivity. An accurate analytical model of support loss for RMGs is presented to enhance their Q factors. The anchor type and support loss mechanism of an RMG are analyzed. Firstly, the support loads, powers flowing into support structure, and vibration energy of an RMG are all developed. Then the analytical model of support loss for the RMG is developed, and its sensitivities to the main structural parameters are also analyzed. High-Q design guidelines for rocking mass microgyroscopes are deduced. Finally, the analytical model is validated by the experimental data and the data from the existing literature. The thicknesses of the prototypes are reduced from 240 μm to 60 μm, while Q factors increase from less than 150 to more than 800. The derived model is general and applicable to various beam resonators, providing significant insight to the design of high-Q MEMS devices

    Capsaicin Protects Cardiomyocytes against Anoxia/Reoxygenation Injury via Preventing Mitochondrial Dysfunction Mediated by SIRT1

    Get PDF
    Capsaicin (Cap) has been reported to have beneficial effects on cardiovascular system, but the mechanisms underlying these effects are still poorly understood. Apoptosis has been shown to be involved in mitochondrial dysfunction, and upregulating expression of SIRT1 can inhibit the apoptosis of cardiomyocytes induced by anoxia/reoxygenation (A/R). Therefore, the aim of this study was to test whether the protective effects of Cap against the injury to the cardiomyocytes are mediated by SIRT1. The effects of Cap with or without coadministration of sirtinol, a SIRT1 inhibitor, on changes induced by A/R in the cell viability, activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK), levels of intracellular reactive oxygen species (ROS), and mitochondrial membrane potential (MMP), related protein expression, mitochondrial permeability transition pore (mPTP) opening, and apoptosis rate in the primary neonatal rat cardiomyocytes were tested. Cap significantly increased the cell viability, upregulated expression of SIRT1 and Bcl-2, and decreased the LDH and CPK release, generation of ROS, loss of MMP, mPTP openness, activities of caspase-3, release of the cytochrome c, and apoptosis of the cardiomyocytes. Sirtinol significantly blocked the cardioprotective effects of Cap. The results suggest that the protective effects of Cap against A/R-induced injury to the cardiomyocytes are involved with SIRT1

    Rapid and Unconditional Parametric Reset Protocol for Tunable Superconducting Qubits

    Full text link
    Qubit initialization is a critical task in quantum computation and communication. Extensive efforts have been made to achieve this with high speed, efficiency and scalability. However, previous approaches have either been measurement-based and required fast feedback, suffered from crosstalk or required sophisticated calibration. Here, we report a fast and high-fidelity reset scheme, avoiding the issues above without any additional chip architecture. By modulating the flux through a transmon qubit, we realize a swap between the qubit and its readout resonator that suppresses the excited state population to 0.08% ±\pm 0.08% within 34 ns (284 ns if photon depletion of the resonator is required). Furthermore, our approach (i) can achieve effective second excited state depletion, (ii) has negligible effects on neighbouring qubits, and (iii) offers a way to entangle the qubit with an itinerant single photon, useful in quantum communication applications.Comment: 38 pages, 15 figure

    Genome-wide CRISPR/Cas9 screening for drug resistance in tumors

    Get PDF
    Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) screening is a simple screening method for locating loci under specific conditions, and it has been utilized in tumor drug resistance research for finding potential drug resistance-associated genes. This screening strategy has significant implications for further treatment of malignancies with acquired drug resistance. In recent years, studies involving genome-wide CRISPR/Cas9 screening have gradually increased. Here we review the recent application of genome-wide CRISPR/Cas9 screening for drug resistance, involving mitogen-activated protein kinase (MAPK) pathway inhibitors, poly (ADP-ribose) polymerase inhibitors (PARPi), alkylating agents, mitotic inhibitors, antimetabolites, immune checkpoint inhibitors (ICIs), and cyclin-dependent kinase inhibitors (CDKI). We summarize drug resistance pathways such as the KEAP1/Nrf2 pathway MAPK pathway, and NF-κB pathway. Also, we analyze the limitations and conditions for the application of genome-wide CRISPR/Cas9 screening techniques

    Absorbing customer knowledge: how customer involvement enables service design success

    Get PDF
    Customers are a knowledge resource outside of the firm that can be utilized for new service success by involving them in the design process. However, existing research on the impact of customer involvement (CI) is inconclusive. Knowledge about customers’ needs and on how best to serve these needs (articulated in the service concept) is best obtained from customers themselves. However, codesign runs the risk of losing control of the service concept. This research argues that of the processes of external knowledge, acquisition (via CI), customer knowledge assimilation, and concept transformation form a capability that enables the firm to exploit customer knowledge in the form of a successful new service. Data from a survey of 126 new service projects show that the impact of CI on new service success is fully mediated by customer knowledge assimilation (the deep understanding of customers’ latent needs) and concept transformation (the modification of the service concept due to customer insights). However, its impact is more nuanced. CI exhibits an “∩”-shaped relationship with transformation, indicating there is a limit to the beneficial effect of CI. Its relationship with assimilation is “U” shaped, suggesting a problem with cognitive inertia where initial learnings are ignored. Customer knowledge assimilation directly impacts success, while concept transformation only helps success in the presence of resource slack. An evolving new service design is only beneficial if the firm has the flexibility to adapt to change

    Solid Lubrication System and Its Plasma Surface Engineering: A Review

    No full text
    In aerospace, aviation, nuclear power, and other high-tech fields, some essential moving parts must operate under high vacuum, high load, intense radiation, and other conditions. Under such extreme conditions, only solid lubricating materials can meet the lubrication requirements. Traditional material modification methods have problems such as high energy consumption, severe pollution, and narrow scope of application. Plasma modification technology can overcome these shortcomings. This paper focuses on several commonly used plasma preparation techniques for solid lubricating coatings, including plasma chemical heat treatment, physical vapor deposition, plasma immersion ion implantation and deposition, plasma spraying, and plasma electrolytic oxidation. Subsequently, the material systems of metal-based solid lubrication coatings are reviewed: soft metals, oxides, sulfides, nitrides, and carbon-based materials. Finally, found that the development of new solid lubricants, the improvement of existing preparation technology, and the development of new processes are the key development directions in the future

    Metagenomic assembled genomes unravel purple non‑sulfur bacteria (PNSB) involved in integrating C, N, P biotransformation

    No full text
    Purple non‑sulfur bacteria (PNSB) based bioprocess has been developed to remove carbon, nitrogen and phosphorus from wastewater. However, the interactions of various bioconversion of carbon (C), nitrogen (N) and phosphorus (P) are not completely clear. In this study, a genome-centric metagenomic approach was employed to delineate the shift in microbial community structures and functional genes under light and dark conditions. Seven and 22 metagenomic assembled genomes (MAGs) were recovered from samples in light and dark conditions, accounting for a substantial portion of microbes. Under light, Rhodopseudomonas palustris promoted complex metabolic processes and interactions for C, N and P conversions. Burkholderia contaminans was discovered as new potential organisms for simultaneous C, N and P removal. Metagenomics analysis confirmed genes involved in the synthesis of glycogen, poly-β-hydroxybutyrate, poly-P, amino acids and carotenoids in R. palustris. The substrate transformation mechanisms and potential pathways were proposed according to the detected metabolites. Our findings provided insights into a new biological system with simultaneous C, N and P bioconversions, and improved the understanding of interactions among the key populations.Agency for Science, Technology and Research (A*STAR)Nanyang Technological UniversityThe authors are grateful for the financial support provided by the Advanced Environmental Biotechnology Centre (AEBC) of Nanyang Technological University, the Research Fund for the Doctoral Program of Singapore and Interdisciplinary Graduate School of Nanyang Technological University. This work was also supported by A*STAR SFS IAF-PP grant (A20H7a0152) awarded to Yan Zhou
    corecore