21 research outputs found
The gut microbiome dysbiosis and regulation by fecal microbiota transplantation: umbrella review
BackgroundGut microbiome dysbiosis has been implicated in various gastrointestinal and extra-gastrointestinal diseases, but evidence on the efficacy and safety of fecal microbiota transplantation (FMT) for therapeutic indications remains unclear.MethodsThe gutMDisorder database was used to summarize the associations between gut microbiome dysbiosis and diseases. We performed an umbrella review of published meta-analyses to determine the evidence synthesis on the efficacy and safety of FMT in treating various diseases. Our study was registered in PROSPERO (CRD42022301226).ResultsGut microbiome dysbiosis was associated with 117 gastrointestinal and extra-gastrointestinal. Colorectal cancer was associated with 92 dysbiosis. Dysbiosis involving Firmicutes (phylum) was associated with 34 diseases. We identified 62 published meta-analyses of FMT. FMT was found to be effective for 13 diseases, with a 95.56% cure rate (95% CI: 93.88–97.05%) for recurrent Chloridoids difficile infection (rCDI). Evidence was high quality for rCDI and moderate to high quality for ulcerative colitis and Crohn’s disease but low to very low quality for other diseases.ConclusionGut microbiome dysbiosis may be implicated in numerous diseases. Substantial evidence suggests FMT improves clinical outcomes for certain indications, but evidence quality varies greatly depending on the specific indication, route of administration, frequency of instillation, fecal preparation, and donor type. This variability should inform clinical, policy, and implementation decisions regarding FMT
An Integrated Spatial Clustering Analysis Method for Identifying Urban Fire Risk Locations in a Network-Constrained Environment: A Case Study in Nanjing, China
The spatial distribution of urban geographical events is largely constrained by the road network, and research on spatial clusters of fire accidents at the city level plays a crucial role in emergency rescue and urban planning. For example, by knowing where and when fire accidents usually occur, fire enforcement can conduct more efficient aid measures and planning department can work out more reasonable layout optimization of fire stations. This article proposed an integrated method by combining weighted network-constrained kernel density estimation (NKDE) and network-constrained local Moran’s I (ILINCS) to detect spatial cluster pattern and identify higher-risk locations of fire accidents. The proposed NKDE-ILINCS weighted a set of crucial non-spatial attributes of point events and links, and considered the impact factors of road traffic states, intersection roads and fire severity in NKDE to reflect real urban environment. This method was tested using the fire data in 2015 in Nanjing, China. The results demonstrated that the method was appropriate to detect network-constrained fire cluster patterns and identify high–high road segments. Besides, the first 14 higher-risk road segments in Nanjing are listed. These findings of this case study enhance our knowledge to more accurately observe where fire accidents usually occur and provide a reference for fire departments to improve emergency rescue effectiveness
Assessing Neighborhood Walkability Based on Usage Characteristics of Amenities under Chinese Metropolises Context
In the age of rapid motorization, walking, as both a green travelling mode and the most common form of daily physical activity, has been given increasing attention in Chinese metropolises. Walkability describes the extent to which a neighborhood environment is walking-friendly and recently has been regarded as a potential impetus for inflated housing prices. In this paper, we develop a walkability measurement model considering residents’ usage characteristics of the amenity, which incorporates three key factors: (1) amenity usage frequency; (2) amenity selection diversity; (3) the distance decay effect. Accordingly, we employ the proposed method to the case of Nanjing City and identify a clear spatial pattern of spatial heterogeneity in walkability among the 4143 dwelling areas within it. The experimental results suggest that the distribution of the residential walkability score varied greatly within Nanjing. It can be seen that dwelling areas with a high walkability score were clustered in the urban central regions and most dwelling areas showed a low walkability. Then, we utilized the hedonic price model to explore the correlation between neighborhood walkability and housing prices. The results show that the effects of community walkability on housing prices were statistically significant in Nanjing. Thus, we can infer that high walkability communities generally have concentrated rich amenity resources, and consequently have high property values
Integrating Spatial and Non-Spatial Dimensions to Measure Urban Fire Service Access
Assessing the access to fire service at an urban scale involves accounting for geographical impedance, demand, and supply, thus both spatial and non-spatial dimensions must be taken into account. Therefore, in this paper, an optimized two-step floating catchment area (F-2SFCA) method is proposed for measuring urban fire service access, which incorporates the effects of both spatial and non-spatial factors into fire service access. The proposed model is conducted in a case study to assess the fire service accessibility of Nanjing City, China, and then compares its differences and strengths to the existing 2SFCA (two-step floating catchment area) methods. The experimental results demonstrate that the proposed method effectively quantifies the actual fire service needs and reflects a more realistic spatial pattern of accessibility (i.e., high accessibility level corresponded to a low fire service needs). In addition, we teste the relationship between service accessibility and the facility busyness using the inverted 2SFCA method. The empirical findings indicate that the weighted average accessibility obtained by F-2SFCA is reciprocal to facility busyness across the study area (based on a 5-min catchment), and fits an obvious nonlinear correlation with the high R-square values. The above results further prove the effectiveness and accuracy of the proposed method in characterizing the accessibility of fire services
Identify and Delimitate Urban Hotspot Areas Using a Network-Based Spatiotemporal Field Clustering Method
Pick-up and drop-off events of taxi trajectory data contain rich information about residents’ travel activities and road traffic. Such data have been widely applied in urban hotspot detection in recent years. However, few studies have attempted to delimitate the urban hotspot scope using taxi trajectory data. On this basis, the current study firstly introduces a network-based spatiotemporal field (NSF) clustering approach to discover and identify hotspots. Our proposed method expands the notion from spatial to space–time dimension and from Euclidean to network space by comparing with traditional spatial clustering analyses. In addition, a concentration index of hotspot areas is presented to refine the surface of centredness to delimitate the hotspot scope further. This index supports the quantitative depiction of hotspot areas by generating two standard deviation isolines. In the case study, we analyze the spatiotemporal dynamic patterns of hotspots at different days and times of day using the NSF method. Meanwhile, we also validate the effectiveness of the proposed method in identifying hotspots to evaluate the delimitating results. Experimental results reveal that the proposed approach can not only help detect detailed microscale characteristics of urban hotspots but also identify high-concentration patterns of pick-up incidents in specific places
Measuring Spatial Accessibility of Urban Fire Services Using Historical Fire Incidents in Nanjing, China
The measurement of spatial accessibility of fire services is a key task in enhancing fire response efficiency and minimizing property losses and deaths. Recently, the two-step floating catchment area method and its modified versions have been widely applied. However, the circle catchment areas used in these methods are not suitable for measuring the accessibility of fire services because each fire station is often responsible for the fire incidents within its coverage. Meanwhile, most existing methods take the demographic data and their centroids of residential areas as the demands and locations, respectively, which makes it difficult to reflect the actual demands and locations of fire services. Thus, this paper proposes a fixed-coverage-based two-step floating catchment area (FC2SFCA) method that takes the fixed service coverage of fire stations as the catchment area and the locations and dispatched fire engines of historical fire incidents as the demand location and size, respectively, to measure the spatial accessibility of fire services. Using a case study area in Nanjing, China, the proposed FC2SFCA and enhanced two-step floating catchment area (E2SFCA) are employed to measure and compare the spatial accessibility of fire incidents and fire stations. The results show that (1) the spatial accessibility across Nanjing, China is unbalanced, with relatively high spatial accessibility in the areas around fire stations and the southwest and northeast at the city center area and relatively low spatial accessibility in the periphery and boundary of the service coverage areas and the core of the city center; (2) compared with E2SFCA, FC2SFCA is less influenced by other fire stations and provides greater actual fire service accessibility; (3) the spatial accessibility of fire services is more strongly affected by the number of fire incidents than firefighting capabilities, the area of service coverage, or the average number of crossroads (per kilometer). Suggestions are then made to improve the overall spatial access to fire services
Nitrogen-Functionalized Ordered Mesoporous Carbons as Multifunctional Supports of Ultrasmall Pd Nanoparticles for Hydrogenation of Phenol
N-functionalized
ordered mesoporous carbons could be readily obtained
by post-synthesis treatment with nitrogen containing molecules to
achieve materials with a nitrogen loading as high as 8.6 wt % and
well preserved mesopore structure. Using NH<sub>3</sub> as nitrogen
source dramatically increased the Brunauer–Emmett–Teller
(BET) surface area and pore volume of the resultant hybrid material;
however, N-doping with melamine as a source resulted in the contrary
results. The N-doped carbons were used as supports to immobilize small-sized
Pd nanoparticles (PdNPs), which provided a unique platform to investigate
the influence of metal nanoparticle size, mesostructural properties,
and N-functionalized supports on the selective hydrogenation of phenol
to cyclohexanone, an important intermediate in the production of nylon
6 and nylon 66 in the chemical industry. The catalyst with ultrasmall
(about 1.2 nm) PdNPs gave the best reaction activity and selectivity
under mild conditions. In addition, the present multifunctional catalyst
demonstrated excellent catalytic stability and could be used 6 times
without loss of product yields. This outstanding catalytic performance
could be attributed to the synergetic effects of mesoporous structure,
N-functionalized supports, and the stabilized ultrasmall PdNPs. This
work might open new avenues for the development of functionalized
catalysts with supported ultrasmall metal nanoparticles and hybrid
porous support as well as their clean catalyses
Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability
Resonance fluorescence scattering is the physical mechanism with which lidar detects atmospheric metal layers. The resonance fluorescence scattering cross section is an important parameter for lidar data processing. In this work, the resonance fluorescence backscattering cross sections of most detectable metal atoms and ions in the atmosphere were calculated. The calculated maximum backscattering cross section of Na at the D2 line is 7.38 × 10−17 m2/sr; K at the D1 line is 7.37 × 10−17 m2/sr; Fe at the 372 nm line is 7.53 × 10−18 m2/sr; Fe at the 374 nm line is 6.98 × 10−18 m2/sr; Fe at the 386 nm line is 3.75 × 10−18 m2/sr; Ni at the 337 nm line is 4.05 × 10−18 m2/sr; and Ni at the 341 nm line is 2.05 × 10−17 m2/sr; Ca is 3.06 × 10−16 m2/sr; Ca+ is 1.12 × 10−16 m2/sr. The influence of the laser linewidth on the effective scattering cross section was discussed. If the laser linewidth is lower than 2 GHz to detect Na, the laser center frequency locked at the D2a line is a better option than the D2 line in order to obtain greater signals. If an unlocked lidar is used to detect Na, the frequency at D2a should be used as the laser center frequency when the effective scattering cross section of Na was calculated, because the absorption cross section of Na atom has two local maxima. This work proposes a quantifiable comparative method for assessing the observation difficulty of different metal particles by comparing their relative uncertainties in lidar observation. It is assumed that under the same observation conditions, the detectability of different metal atoms and ions is compared. Using Na as a basis for comparison, the relative uncertainty of Ni at 337 nm is the highest, about a factor of 21 larger than that of Na, indicating that it is the most difficult to be detected. The purpose of this work is to present a quantifiable comparison method for the detection difficulty of the metal particles by lidar in the middle and upper atmosphere, which has great significance for the design of the lidar system
Silicon application enhances wheat defence against Sitobion avenae F. by regulating plant physiological-biochemical responses
Sitobion avenae F. is a highly prevalent and devastating pest in wheat crops, leading to significant yield losses. Silicon (Si) has been widely recognized as an effective inducer of plant resistance against aphids. Nevertheless, the underlying mechanisms governing the physiological and biochemical responses of plants induced by Si defense against S. avenae F. remain incompletely understood. In this study, we conducted experiments by treating wheat leaves with varying concentrations of Tetraethyl orthosilicate (TEOS) spray under aphid infestation. We meticulously observed and recorded the life cycle of S. avenae F. and measured the content of plant hormones, secondary metabolites, and the activity of defense enzymes in wheat leaves. Furthermore, we utilized structural equation modeling to discern the causal correlation between aphid performance and the physiological-biochemical responses of wheat under TEOS sprays. Our findings revealed that a concentration of 3 mmol/L TEOS significantly shortened the net reproductive rate, intrinsic rate and finite rate of increase, and mean generation time of S. avenae F., while simultaneously prolonging the population doubling time. Additionally, the content of lignin, total phenolics, flavonoids, alkaloids, tannin, jasmonic acid (JA), and salicylic acid in wheat leaves exhibited a substantial increase. Furthermore, the activity of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), catalase, and lipoxygenase in wheat leaves was significantly enhanced. Our results suggest that TEOS spray reduced the survival and population growth of S. avenae F. while enhancing the defense response of wheat against aphids by activating the activity of PAL and PPO in wheat, and increasing the content of total phenolic and JA. This work provides valuable insights for the development of appropriate Si fertilizers for effective pest management and offers robust theoretical support for wheat aphid control through agricultural fertilization strategies
TEM Investigation of Asymmetric Deposition-Driven Crystalline-to-Amorphous Transition in Silicon Nanowires
Controlling the shape and internal strain of nanowires (NWs) is critical for their safe and reliable use and for the exploration of novel functionalities of nanodevices. In this work, transmission electron microscopy was employed to examine bent Si NWs prepared by asymmetric electron-beam evaporation. The asymmetric deposition of Cr caused the formation of nanosized amorphous-Si domains; the non-crystallinity of the Si NWs was controlled by the bending radius. No other intermediate crystalline phase was present during the crystalline-to-amorphous transition, indicating a direct phase transition from the original crystalline phase to the amorphous phase. Moreover, amorphous microstructures caused by compressive stress, such as amorphous Cr domains and boxes, were also observed in the asymmetric Cr layer used to induce bending, and the local non-crystallinity of Cr was lower than that of Si under the same bending radius