54 research outputs found

    Split structures in general relativity and the Kaluza-Klein theories

    Get PDF
    We construct a general approach to decomposition of the tangent bundle of pseudo-Riemannian manifolds into direct sums of subbundles, and the associated decomposition of geometric objects. An invariant structure {\cal H}^r defined as a set of r projection operators is used to induce decomposition of the geometric objects into those of the corresponding subbundles. We define the main geometric objects characterizing decomposition. Invariant non-holonomic generalizations of the Gauss-Codazzi-Ricci's relations have been obtained. All the known types of decomposition (used in the theory of frames of reference, in the Hamiltonian formulation for gravity, in the Cauchy problem, in the theory of stationary spaces, and so on) follow from the present work as special cases when fixing a basis and dimensions of subbundles, and parameterization of a basis of decomposition. Various methods of decomposition have been applied here for the Unified Multidimensional Kaluza-Klein Theory and for relativistic configurations of a perfect fluid. Discussing an invariant form of the equations of motion we have found the invariant equilibrium conditions and their 3+1 decomposed form. The formulation of the conservation law for the curl has been obtained in the invariant form.Comment: 30 pages, RevTeX, aps.sty, some additions and corrections, new references adde

    Incorporation of Spacetime Symmetries in Einstein's Field Equations

    Get PDF
    In the search for exact solutions to Einstein's field equations the main simplification tool is the introduction of spacetime symmetries. Motivated by this fact we develop a method to write the field equations for general matter in a form that fully incorporates the character of the symmetry. The method is being expressed in a covariant formalism using the framework of a double congruence. The basic notion on which it is based is that of the geometrisation of a general symmetry. As a special application of our general method we consider the case of a spacelike conformal Killing vector field on the spacetime manifold regarding special types of matter fields. New perspectives in General Relativity are discussed.Comment: 41 pages, LaTe

    Hawking Radiation as Tunneling: the D-dimensional rotating case

    Full text link
    The tunneling method for the Hawking radiation is revisited and applied to the DD dimensional rotating case. Emphasis is given to covariance of results. Certain ambiguities afflicting the procedure are resolved.Comment: Talk delivered at the Seventh International Workshop Quantum Field Theory under the influence of External Conditions, QFEXT'05, september 05,Barcelona, Spain. To appear in Journal of Phys.

    Bogolyubov Quasiparticles in Constrained Systems

    Full text link
    The paper is devoted to the formulation of quantum field theory for an early universe in General Relativity considered as the Dirac general constrained system. The main idea is the Hamiltonian reduction of the constrained system in terms of measurable quantities of the observational cosmology: the world proper time, cosmic scale factor, and the density of matter. We define " particles" as field variables in the holomorphic representation which diagonalize the measurable density. The Bogoliubov quasiparticles are determined by diagonalization of the equations of motion (but not only of the initial Hamiltonian) to get the set of integrals of motion (or conserved quantum numbers, in quantum theory). This approach is applied to describe particle creation in the models of the early universe where the Hubble parameter goes to infinity.Comment: 13 pages, Late

    On the algebraic structures connected with the linear Poisson brackets of hydrodynamics type

    Full text link
    The generalized form of the Kac formula for Verma modules associated with linear brackets of hydrodynamics type is proposed. Second cohomology groups of the generalized Virasoro algebras are calculated. Connection of the central extensions with the problem of quntization of hydrodynamics brackets is demonstrated

    Spacetime Splitting, Admissible Coordinates and Causality

    Full text link
    To confront relativity theory with observation, it is necessary to split spacetime into its temporal and spatial components. The (1+3) timelike threading approach involves restrictions on the gravitational potentials (gμν)(g_{\mu \nu}), while the (3+1) spacelike slicing approach involves restrictions on (gμν)(g^{\mu \nu}). These latter coordinate conditions protect chronology within any such coordinate patch. While the threading coordinate conditions can be naturally integrated into the structure of Lorentzian geometry and constitute the standard coordinate conditions in general relativity, this circumstance does not extend to the slicing coordinate conditions. We explore the influence of chronology violation on wave motion. In particular, we consider the propagation of radiation parallel to the rotation axis of stationary G\"odel-type universes characterized by parameters η>0\eta > 0 and λ>0\lambda > 0 such that for η1\eta 1) chronology is protected (violated). We show that in the WKB approximation such waves can freely propagate only when chronology is protected.Comment: 25 pages, 3 figures; v2: minor typos corrected, accepted for publication in Phys. Rev.

    Trialogue on the number of fundamental constants

    Get PDF
    This paper consists of three separate articles on the number of fundamental dimensionful constants in physics. We started our debate in summer 1992 on the terrace of the famous CERN cafeteria. In the summer of 2001 we returned to the subject to find that our views still diverged and decided to explain our current positions. LBO develops the traditional approach with three constants, GV argues in favor of at most two (within superstring theory), while MJD advocates zero.Comment: Version appearing in JHEP; 31 pages late

    On a conjecture of Goodearl: Jacobson radical non-nil algebras of Gelfand-Kirillov dimension 2

    Get PDF
    For an arbitrary countable field, we construct an associative algebra that is graded, generated by finitely many degree-1 elements, is Jacobson radical, is not nil, is prime, is not PI, and has Gelfand-Kirillov dimension two. This refutes a conjecture attributed to Goodearl

    Classical Monopoles: Newton, NUT-space, gravomagnetic lensing and atomic spectra

    Get PDF
    Stimulated by a scholium in Newton's Principia we find some beautiful results in classical mechanics which can be interpreted in terms of the orbits in the field of a mass endowed with a gravomagnetic monopole. All the orbits lie on cones! When the cones are slit open and flattened the orbits are exactly the ellipses and hyperbolae that one would have obtained without the gravomagnetic monopole. The beauty and simplicity of these results has led us to explore the similar problems in Atomic Physics when the nuclei have an added Dirac magnetic monopole. These problems have been explored by others and we sketch the derivations and give details of the predicted spectrum of monopolar hydrogen. Finally we return to gravomagnetic monopoles in general relativity. We explain why NUT space has a non-spherical metric although NUT space itself is the spherical space-time of a mass with a gravomagnetic monopole. We demonstrate that all geodesics in NUT space lie on cones and use this result to study the gravitational lensing by bodies with gravomagnetic monopoles. We remark that just as electromagnetism would have to be extended beyond Maxwell's equations to allow for magnetic monopoles and their currents so general relativity would have to be extended to allow torsion for general distributions of gravomagnetic monopoles and their currents. Of course if monopoles were never discovered then it would be a triumph for both Maxwellian Electromagnetism and General Relativity as they stand!Comment: 39 pages, 9 figures and 2 tables available on request from the author

    Physically motivated uncertainty relations at the Planck length for an emergent non commutative spacetime

    Full text link
    We derive new space-time uncertainty relations (STUR) at the fundamental Planck length LPL_P from quantum mechanics and general relativity (GR), both in flat and curved backgrounds. Contrary to claims present in the literature, our approach suggests that no minimal uncertainty appears for lengths, but instead for minimal space and four-volumes. Moreover, we derive a maximal absolute value for the energy density. Finally, some considerations on possible commutators among quantum operators implying our STUR are done.Comment: Final version published in "Class. Quantum Grav.
    corecore