4 research outputs found

    Malaria risk factor assessment using active and passive surveillance data from Aceh Besar, Indonesia, a low endemic, malaria elimination setting with Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum

    Get PDF
    Background: As malaria transmission declines, it becomes more geographically focused and more likely due to asymptomatic and non-falciparum infections. To inform malaria elimination planning in the context of this changing epidemiology, local assessments on the risk factors for malaria infection are necessary, yet challenging due to the low number of malaria cases. Methods: A population-based, cross-sectional study was performed using passive and active surveillance data collected in Aceh Besar District, Indonesia from 2014 to 2015. Malaria infection was defined as symptomatic polymerase chain reaction (PCR)-confirmed infection in index cases reported from health facilities, and asymptomatic or symptomatic PCR-confirmed infection identified in reactive case detection (RACD). Potential risk factors for any infection, species-specific infection, or secondary-case detection in RACD were assessed through questionnaires and evaluated for associations. Results: Nineteen Plasmodium knowlesi, 12 Plasmodium vivax and six Plasmodium falciparum cases were identified passively, and 1495 community members screened in RACD, of which six secondary cases were detected (one P. knowlesi, three P. vivax, and two P. falciparum, with four being asymptomatic). Compared to non-infected subjects screened in RACD, cases identified through passive or active surveillance were more likely to be male (AOR 12.5, 95 % CI 3.0–52.1), adult (AOR 14.0, 95 % CI 2.2–89.6 for age 16–45 years compared to <15 years), have visited the forest in the previous month for any reason (AOR 5.6, 95 % CI 1.3–24.2), and have a workplace near or in the forest and requiring overnight stays (AOR 7.9, 95 % CI 1.6–39.7 compared to workplace not near or in the forest). Comparing subjects with infections of different species, differences were observed in sub-district of residence and other demographic and behavioural factors. Among subjects screened in RACD, cases compared to non-cases were more likely to be febrile and reside within 100 m of the index case. Conclusion: In this setting, risk of malaria infection in index and RACD identified cases was associated with forest exposure, particularly overnights in the forest for work. In low-transmission settings, utilization of data available through routine passive and active surveillance can support efforts to target individuals at high ris

    Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia

    No full text
    Abstract Background Reactive case detection (RACD) is an active case finding strategy where households and neighbours of a passively identified case (index case) are screened to identify and treat additional malaria infections with the goal of gathering surveillance information and potentially reducing further transmission. Although it is widely considered a key strategy in low burden settings, little is known about the costs and the cost-effectiveness of different diagnostic methods used for RACD. The aims of this study were to measure the cost of conducting RACD and compare the cost-effectiveness of microscopy to the more sensitive diagnostic method loop-mediated isothermal amplification (LAMP). Methods The study was conducted in RACD surveillance sites in five sub-districts in Aceh Besar, Indonesia. The cost inputs and yield of implementing RACD with microscopy and/or LAMP were collected prospectively over a 20 months study period between May 2014 and December 2015. Costs and cost-effectiveness (USD) of the different strategies were examined. The main cost measures were cost per RACD event, per person screened, per population at risk (PAR); defined as total population in each sub-district, and per infection found. The main cost-effectiveness measure was incremental cost-effectiveness ratio (ICER), expressed as cost per malaria infection detected by LAMP versus microscopy. The effects of varying test positivity rate or diagnostic yield on cost per infection identified and ICER were also assessed. Results Among 1495 household members and neighbours screened in 36 RACD events, two infections were detected by microscopy and confirmed by LAMP, and four infections were missed by microscopy but detected by LAMP. The average total cost of conducting RACD using microscopy and LAMP was 1178pereventwithLAMP−specific consumablesandpersonnelbeingthemaincostdrivers.TheaveragecostofscreeningoneindividualduringRACDwas1178 per event with LAMP-specific consumables and personnel being the main cost drivers. The average cost of screening one individual during RACD was 11, with an additional cost of diagnostics at 0.62and0.62 and 16 per person for microscopy and LAMP, respectively. As a public health intervention, RACD using both diagnostics cost an average of 0.42perPARperyear.ComparingRACDusingmicroscopyonlyversusRACDusingLAMPonly,thecostperinfectionfoundwas0.42 per PAR per year. Comparing RACD using microscopy only versus RACD using LAMP only, the cost per infection found was 8930 and 6915,respectively.ToaddLAMPasanadditionalinterventionaccompanyingRACDwouldcost6915, respectively. To add LAMP as an additional intervention accompanying RACD would cost 9 per individual screened annually in this setting. The ICER was estimated to be $5907 per additional malaria infection detected by LAMP versus microscopy. Cost per infection identified and ICER declined with increasing test positivity rate and increasing diagnostic yield. Conclusions This study provides the first estimates on the cost and cost-effectiveness of RACD from a low transmission setting. Costs per individual screened were high, though costs per PAR were low. Compared to microscopy, the use of LAMP in RACD was more costly but more cost-effective for the detection of infections, with diminishing returns observed when findings were extrapolated to scenarios with higher prevalence of infection using more sensitive diagnostics. As malaria programmes consider active case detection and the integration of more sensitive diagnostics, these findings may inform strategic and budgetary planning
    corecore