1,016 research outputs found

    A revised asteroid polarization-albedo relationship using WISE/NEOWISE data

    Get PDF
    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log(albedo)-log(polarization slope)-log(minimum polarization). When projected to two dimensions the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with albedo and present the best fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D<30 km) asteroids are under-represented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies.Comment: 16 pages, Accepted to Ap

    Simulation study for analysis of binary responses in the presence of extreme case problems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimates of variance components for binary responses in presence of extreme case problems tend to be biased due to an under-identified likelihood. The bias persists even when a normal prior is used for the fixed effects.</p> <p>Methods</p> <p>A simulation study was carried out to investigate methods for the analysis of binary responses with extreme case problems. A linear mixed model that included a fixed effect and random effects of sire and residual on the liability scale was used to generate binary data. Five simulation scenarios were conducted based on varying percentages of extreme case problems, with true values of heritability equal to 0.07 and 0.17. Five replicates of each dataset were generated and analyzed with a generalized prior (<b>g-prior</b>) of varying weight.</p> <p>Results</p> <p>Point estimates of sire variance using a normal prior were severely biased when the percentage of extreme case problems was greater than 30%. Depending on the percentage of extreme case problems, the sire variance was overestimated when a normal prior was used by 36 to 102% and 25 to 105% for a heritability of 0.17 and 0.07, respectively. When a g-prior was used, the bias was reduced and even eliminated, depending on the percentage of extreme case problems and the weight assigned to the g-prior. The lowest Pearson correlations between true and estimated fixed effects were obtained when a normal prior was used. When a 15% g-prior was used instead of a normal prior with a heritability equal to 0.17, Pearson correlations between true and fixed effects increased by 11, 20, 23, 27, and 60% for 5, 10, 20, 30 and 75% of extreme case problems, respectively. Conversely, Pearson correlations between true and estimated fixed effects were similar, within datasets of varying percentages of extreme case problems, when a 5, 10, or 15% g-prior was included. Therefore this indicates that a model with a g-prior provides a more adequate estimation of fixed effects.</p> <p>Conclusions</p> <p>The results suggest that when analyzing binary data with extreme case problems, bias in the estimation of variance components could be eliminated, or at least significantly reduced by using a g-prior.</p

    Main Belt Asteroids with WISE/NEOWISE I: Preliminary Albedos and Diameters

    Get PDF
    We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited to measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of Solar system objects. Using a NEATM thermal model fitting routine we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributions of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE dataset and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.Comment: Accepted to ApJ. Online table to also appear on the publisher's websit

    Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development

    Get PDF
    Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development

    Dynamic modeling of mean-reverting spreads for statistical arbitrage

    Full text link
    Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.Comment: 34 pages, 6 figures. Submitte

    Assimilation of healthy and indulgent impressions from labelling influences fullness but not intake or sensory experience

    Get PDF
    Background: Recent evidence suggests that products believed to be healthy may be over-consumed relative to believed indulgent or highly caloric products. The extent to which these effects relate to expectations from labelling, oral experience or assimilation of expectations is unclear. Over two experiments, we tested the hypotheses that healthy and indulgent information could be assimilated by oral experience of beverages and influence sensory evaluation, expected satiety, satiation and subsequent appetite. Additionally, we explored how expectation-experience congruency influenced these factors. Results: Results supported some assimilation of healthiness and indulgent ratings—study 1 showed that indulgent ratings enhanced by the indulgent label persisted post-tasting, and this resulted in increased fullness ratings. In study 2, congruency of healthy labels and oral experience promoted enhanced healthiness ratings. These healthiness and indulgent beliefs did not influence sensory analysis or intake—these were dictated by the products themselves. Healthy labels, but not experience, were associated with decreased expected satiety. Conclusions: Overall labels generated expectations, and some assimilation where there were congruencies between expectation and experience, but oral experience tended to override initial expectations to determine ultimate sensory evaluations and intake. Familiarity with the sensory properties of the test beverages may have resulted in the use of prior knowledge, rather than the label information, to guide evaluations and behaviour
    corecore