105 research outputs found

    Copolymer of chitosan with acrylamide: electron beam stimulated synthesis, structure and properties

    Get PDF
    The aim of this research was to obtain the grafted copolymer of chitosan with acrylamide using the electron beam irradiation. Radiation dose was varied from 6 to 160 kGy. The highest yield of the product was observed at radiation dose of 12–40 kGy. Further increase in the dose caused a decrease in the product yield as well as its solubility in water. Using gel permeation chromatography, it was confirmed that unreacted chitosan remained in the product. NMR study of the water-soluble part of the product obtained under the doses of 6, 12, and 20 kGy showed that the length of the side chains of grafted acrylamide was about 2 elementary units. Investigation of chitosan solutions by means of dynamic light scattering revealed the presence of chitosan agglomerates in the solution. The possibility of obtaining dense films was demonstrated. Mechanical treatment of the copolymer in the ball mill caused an increase in the solubility of the samples obtained even at radiation doses of 80 and 160 kGy. It was determined by means of chromatographic methods that there were no products with low molecular weight in the ball-milled product, and unreacted chitosan did not undergo mechanocracking during the mechanical treatment

    Принципы организации обследования пациентов в пульмонологии

    Get PDF
    Organization principles of examination of patients with pulmonary diseases are considered. The structure of re-examination center in case of digital prophylactic X-ray chest units application is offered.Рассматриваются принципы организации дообследования пациентов в пульмонологии. Представлена структура центра дообследования для случая, когда профилактические исследования легких у населения проводятся с применением малодозовых цифровых флюорографических установок

    Enhancement of COPD biological networks using a web-based collaboration interface

    Get PDF
    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks
    corecore