15 research outputs found

    A novel gene, MDS2, is fused to ETV6/TEL in a t(1;12)(p36.1;p13) in a patient with myelodysplastic syndrome

    Get PDF
    ETV6/TEL is the first transcription factor identified that is specifically required for hematopoiesis within the bone marrow. This gene has been found to have multiple fusion partners of which 16 have been cloned. Fluorescence in situ hybridization (FISH) analysis in a patient with myelodysplastic syndrome (MDS) revealed a t(1;12)(p36;p13) involving ETV6, with the breakpoint in this gene between exon 2 and exon 3. We report here the cloning of a novel ETV6 partner located on 1p36.1, involved in the t(1;12). 3' RACE-PCR from RNA identified a novel sequence fused to exon 2 of ETV6. Database searches localized this sequence in a bacterial artificial chromosome (BAC) mapped to 1p36 by fingerprint analysis. This result was confirmed by FISH using this BAC as probe. 5' and 3' RACE experiments with primers from this novel sequence were carried out on RNA from a healthy donor and identified a novel full-length mRNA, which we named MDS2 (myelodysplastic syndrome 2). RT-PCR experiments were performed on a panel of human cDNAs to analyze the expression pattern of this gene and they revealed four splicing variants. RT-PCR analysis showed that ETV6-MDS2, but not the reciprocal MDS2-ETV6 fusion transcript, was expressed in the bone marrow of the patient. The product of the ETV6-MDS2 fusion transcript predicts a short ETV6 protein containing the first 54 amino acids of ETV6 plus four novel amino acids, lacking both the PTN and the DNA-binding domains. Possible mechanisms to account for the development of MDS in this patient are discussed

    Deep Learning-based Detection of Intravenous Contrast Enhancement on CT Scans

    No full text
    Identifying the presence of intravenous contrast material on CT scans is an important component of data curation for medical imaging-based artificial intelligence model development and deployment. Use of intravenous contrast material is often poorly documented in imaging metadata, necessitating impractical manual annotation by clinician experts. Authors developed a convolutional neural network (CNN)-based deep learning platform to identify intravenous contrast enhancement on CT scans. For model development and validation, authors used six independent datasets of head and neck (HN) and chest CT scans, totaling 133 480 axial two-dimensional sections from 1979 scans, which were manually annotated by clinical experts. Five CNN models were trained first on HN scans for contrast enhancement detection. Model performances were evaluated at the patient level on a holdout set and external test set. Models were then fine-tuned on chest CT data and externally validated. This study found that Digital Imaging and Communications in Medicine metadata tags for intravenous contrast material were missing or erroneous for 1496 scans (75.6%). An EfficientNetB4-based model showed the best performance, with areas under the curve (AUCs) of 0.996 and 1.0 in HN holdout (n = 216) and external (n = 595) sets, respectively, and AUCs of 1.0 and 0.980 in the chest holdout (n = 53) and external (n = 402) sets, respectively. This automated, scan-to-prediction platform is highly accurate at CT contrast enhancement detection and may be helpful for artificial intelligence model development and clinical application. Keywords: CT, Head and Neck, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Machine Learning Algorithms, Contrast Material Supplemental material is available for this article. © RSNA, 2022

    Deep Learning-based Detection of Intravenous Contrast Enhancement on CT Scans

    No full text
    Identifying the presence of intravenous contrast material on CT scans is an important component of data curation for medical imaging–based artificial intelligence model development and deployment. Use of intravenous contrast material is often poorly documented in imaging metadata, necessitating impractical manual annotation by clinician experts. Authors developed a convolutional neural network (CNN)–based deep learning platform to identify intravenous contrast enhancement on CT scans. For model development and validation, authors used six independent datasets of head and neck (HN) and chest CT scans, totaling 133 480 axial two-dimensional sections from 1979 scans, which were manually annotated by clinical experts. Five CNN models were trained first on HN scans for contrast enhancement detection. Model performances were evaluated at the patient level on a holdout set and external test set. Models were then fine-tuned on chest CT data and externally validated. This study found that Digital Imaging and Communications in Medicine metadata tags for intravenous contrast material were missing or erroneous for 1496 scans (75.6%). An EfficientNetB4-based model showed the best performance, with areas under the curve (AUCs) of 0.996 and 1.0 in HN holdout (n = 216) and external (n = 595) sets, respectively, and AUCs of 1.0 and 0.980 in the chest holdout (n = 53) and external (n = 402) sets, respectively. This automated, scan-to-prediction platform is highly accurate at CT contrast enhancement detection and may be helpful for artificial intelligence model development and clinical application. Keywords: CT, Head and Neck, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Machine Learning Algorithms, Contrast Material Supplemental material is available for this article. © RSNA, 202

    Elevated Coronary Artery Calcium Quantified by a Validated Deep Learning Model From Lung Cancer Radiotherapy Planning Scans Predicts Mortality

    No full text
    PURPOSE: Coronary artery calcium (CAC) quantified on computed tomography (CT) scans is a robust predictor of atherosclerotic coronary disease; however, the feasibility and relevance of quantitating CAC from lung cancer radiotherapy planning CT scans is unknown. We used a previously validated deep learning (DL) model to assess whether CAC is a predictor of all-cause mortality and major adverse cardiac events (MACEs). METHODS: Retrospective analysis of non-contrast-enhanced radiotherapy planning CT scans from 428 patients with locally advanced lung cancer is performed. The DL-CAC algorithm was previously trained on 1,636 cardiac-gated CT scans and tested on four clinical trial cohorts. Plaques ≥ 1 cubic millimeter were measured to generate an Agatston-like DL-CAC score and grouped as DL-CAC = 0 (very low risk) and DL-CAC ≥ 1 (elevated risk). Cox and Fine and Gray regressions were adjusted for lung cancer and cardiovascular factors. RESULTS: The median follow-up was 18.1 months. The majority (61.4%) had a DL-CAC ≥ 1. There was an increased risk of all-cause mortality with DL-CAC ≥ 1 versus DL-CAC = 0 (adjusted hazard ratio, 1.51; 95% CI, 1.01 to 2.26; P = .04), with 2-year estimates of 56.2% versus 45.4%, respectively. There was a trend toward increased risk of major adverse cardiac events with DL-CAC ≥ 1 versus DL-CAC = 0 (hazard ratio, 1.80; 95% CI, 0.87 to 3.74; P = .11), with 2-year estimates of 7.3% versus 1.2%, respectively. CONCLUSION: In this proof-of-concept study, CAC was effectively measured from routinely acquired radiotherapy planning CT scans using an automated model. Elevated CAC, as predicted by the DL model, was associated with an increased risk of mortality, suggesting a potential benefit for automated cardiac risk screening before cancer therapy begins

    Elevated Coronary Artery Calcium Quantified by a Validated Deep Learning Model From Lung Cancer Radiotherapy Planning Scans Predicts Mortality

    No full text
    PURPOSE: Coronary artery calcium (CAC) quantified on computed tomography (CT) scans is a robust predictor of atherosclerotic coronary disease; however, the feasibility and relevance of quantitating CAC from lung cancer radiotherapy planning CT scans is unknown. We used a previously validated deep learning (DL) model to assess whether CAC is a predictor of all-cause mortality and major adverse cardiac events (MACEs). METHODS: Retrospective analysis of non-contrast-enhanced radiotherapy planning CT scans from 428 patients with locally advanced lung cancer is performed. The DL-CAC algorithm was previously trained on 1,636 cardiac-gated CT scans and tested on four clinical trial cohorts. Plaques ≥ 1 cubic millimeter were measured to generate an Agatston-like DL-CAC score and grouped as DL-CAC = 0 (very low risk) and DL-CAC ≥ 1 (elevated risk). Cox and Fine and Gray regressions were adjusted for lung cancer and cardiovascular factors. RESULTS: The median follow-up was 18.1 months. The majority (61.4%) had a DL-CAC ≥ 1. There was an increased risk of all-cause mortality with DL-CAC ≥ 1 versus DL-CAC = 0 (adjusted hazard ratio, 1.51; 95% CI, 1.01 to 2.26; P = .04), with 2-year estimates of 56.2% versus 45.4%, respectively. There was a trend toward increased risk of major adverse cardiac events with DL-CAC ≥ 1 versus DL-CAC = 0 (hazard ratio, 1.80; 95% CI, 0.87 to 3.74; P = .11), with 2-year estimates of 7.3% versus 1.2%, respectively. CONCLUSION: In this proof-of-concept study, CAC was effectively measured from routinely acquired radiotherapy planning CT scans using an automated model. Elevated CAC, as predicted by the DL model, was associated with an increased risk of mortality, suggesting a potential benefit for automated cardiac risk screening before cancer therapy begins

    Deep convolutional neural networks to predict cardiovascular risk from computed tomography

    No full text
    Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health. Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study
    corecore