17 research outputs found

    Modularity of a Cambrian ptychoparioid trilobite cranidium

    Full text link
    Modularity of the cranidium of Crassifimbra? metalaspis , a Cambrian ptychoparioid trilobite, is investigated using landmark-based geometric morphometric methods to gain insight into the integration among morphogenetic processes responsible for shaping the head of an ancient arthropod. Of particular interest is the extent to which the structure of phenotypic integration was governed by direct interactions among developmental pathways, because these interactions may generate long-term constraints on evolutionary innovation. A modified two-way ANOVA decomposes cranidial shape variation into components representing symmetric variation among individuals and fluctuating asymmetry (FA). The structure of integration of each of these components is inferred from correlated deviations in shape among nine partitions of the cranidium. Significant correlation among partitions in FA indicates direct interactions among their respective developmental pathways. An a priori hypothesis that modularity was determined by functional association among partitions is not well supported by the among-partition correlation structure for either component of variation. Instead, exploratory analyses reveal that phenotypic integration was strongly influenced by spatially localized morphogenetic controls. Comparison of the structures of the Individuals and FA components of variation reveals that the two share relatively few commonalities: the structure of phenotypic integration was only weakly influenced by direct interactions. The large contribution of parallel variation to phenotypic integration suggests that modularity was unlikely to have imposed a long-term constraint on evolutionary innovation in these early trilobites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79346/1/j.1525-142X.2010.00459.x.pd

    Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance

    Full text link
    In the absence of processes regulating morphogenesis and growth, phenotypic variance of a population experiencing no selective mortality should increase throughout ontogeny. To determine whether it does, we measure variance of skull shape using geometric morphometrics and examine its ontogenetic dynamics in the precocial cotton rat ( Sigmodon fulviventer ) and the altricial house mouse ( Mus musculus domesticus ). In both species, variance of shape halves between the two youngest samples measured (between 1 and 10 days postnatal and 10 and 15 days postnatal, respectively) and thereafter is nearly constant. The reduction in variance did not appear to result from a general regulation of skull size or developmental timing, although skull size may also be regulated and developmental timing is an important component of the variation in skull shape of young house mice. The ontogenetic dynamics of variance suggest two possible scenarios. First, variation generated during fetal or early postnatal growth is not immediately compensated and therefore accumulates, whereas later in growth, variation is continually generated and rapidly compensated. Second, variation generated during fetal and early postnatal growth is rapidly compensated, after which no new variance is produced. Based on a general model for bone growth, we hypothesize that variance is generated when bone grows under the direction of disorganized muscular movements and decreases with increasing neuromuscular control. Additionally, increasing coherence of signals transmitted by the growing brain and sensory organs, which exert tensile forces on bone, may also canalize skull shape.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72090/1/j.1525-142X.2004.04025.x.pd

    SPATIOTEMPORAL REORGANIZATION OF GROWTH RATES IN THE EVOLUTION OF ONTOGENY

    Full text link
    Heterochrony, evolutionary changes in rate or timing of development producing parallelism between ontogeny and phylogeny, is viewed as the most common type of evolutionary change in development. Alternative hypotheses such as heterotopy, evolutionary change in the spatial patterning of development, are rarely entertained. We examine the evidence for heterochrony and heterotopy in the evolution of body shape in two clades of piranhas. One of these is the sole case of heterochrony previously reported in the group; the others were previously interpreted as cases of heterotopy. To compare ontogenies of shape, we computed ontogenetic trajectories of shape by multivariate regression of geometric shape variables (i.e., partial warp scores and shape coordinates) on centroid size. Rates of development relative to developmental age and angles between the trajectories were compared statistically. We found a significant difference in developmental rate between species of Serrasalmus , suggesting that heterochrony is a partial explanation for the evolution of body shape, but we also found a significant difference between their ontogenetic transformations; the direction of the difference between them suggests that heterotopy also plays a role in this group. In Pygocentrus we found no difference in developmental rate among species, but we did find a difference in the ontogenies, suggesting that heterotopy, but not heterochrony, is the developmental basis for shape diversification in this group. The prevalence of heterotopy as a source of evolutionary novelty remains largely unexplored and will not become clear until the search for developmental explanations looks beyond heterochrony.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72102/1/j.0014-3820.2000.tb00568.x.pd

    Ontogeny Of Integrated Skull Growth In The Cotton Rat Sigmodon Fulviventer

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137530/1/evo00626.pd

    Ontogenetic relationships between cranium and mandible in coyotes and hyenas

    Full text link
    Developing animals must resolve the conflicting demands of survival and growth, ensuring that they can function as infants or juveniles while developing toward their adult form. In the case of the mammalian skull, the cranium and mandible must maintain functional integrity to meet the feeding needs of a juvenile even as the relationship between parts must change to meet the demands imposed on adults. We examine growth and development of the cranium and mandible, using a unique ontogenetic series of known-age coyotes ( Canis latrans ), analyzing ontogenetic changes in the shapes of each part, and the relationship between them, relative to key life-history events. Both cranial and mandibular development conform to general mammalian patterns, but each also exhibits temporally and spatially localized maturational transformations, yielding a complex relationship between growth and development of each part as well as complex patterns of synchronous growth and asynchronous development between parts. One major difference between cranium and mandible is that the cranium changes dramatically in both size and shape over ontogeny, whereas the mandible undergoes only modest shape change. Cranium and mandible are synchronous in growth, reaching adult size at the same life-history stage; growth and development are synchronous for the cranium but not for the mandible. This synchrony of growth between cranium and mandible, and asynchrony of mandibular development, is also characteristic of a highly specialized carnivore, the spotted hyena ( Crocuta crocuta ), but coyotes have a much less protracted development, being handicapped relative to adults for a much shorter time. Morphological development does not predict life-history events in these two carnivores, which is contrary to what has been reported for two rodent species. The changes seen in skull shape in successive life-history stages suggest that adult functional demands cannot be satisfied by the morphology characterizing earlier life-history stages. J. Morphol. 2011. © 2011 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84382/1/10934_ftp.pd

    Canalization and developmental stability in the Brachyrrhine mouse

    Full text link
    The semi-dominant Br mutation affects presphenoid growth, producing the facial retrognathism and globular neurocranial vault that characterize heterozygotes. We analysed the impact of this mutation on skull shape, comparing heterozygotes to wildtype mice, to determine if the effects are skull-wide or confined to the sphenoid region targeted by the mutation. In addition, we examined patterns of variability of shape for the skull as a whole and for three regions (basicranium, face and neurocranium). We found that the Br mice differed significantly from wildtype mice in skull shape in all three regions as well as in the shape of the skull as a whole. However, the significant increases in variance and fluctuating asymmetry were found only in the basicranium of mutant mice. These results suggest that the mutation has a significant effect on the underlying developmental architecture of the skull, which produces an increase in phenotypic variability that is localized to the anatomical region in which the mean phenotype is most dramatically affected. These results suggest that the same developmental mechanisms that produce the change in phenotypic mean also produce the change in variance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75710/1/j.1469-7580.2006.00527.x.pd

    Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings

    Get PDF
    Human activities can generate a wide variety of direct and indirect effects on animals, which can manifest as environmental and genetic stressors. Several phenotypic markers have been proposed as indicators of these stressful conditions but have displayed contrasting results, depending, among others, on the phenotypic trait measured. Knowing the worldwide decline of multiple bumblebee species, it is important to understand these stressors and link them with the drivers of decline. We assessed the impact of several stressors (i.e. natural toxin-, parasite-, thermic- and inbreeding-stress) on both wing shape and size and their variability as well as their directional and fluctuating asymmetries. The total data set includes 650 individuals of Bombus terrestris (Hymenoptera: Apidae). Overall wing size and shape were affected by all the tested stressors. Except for the sinigrin (e.g. glucosinolate) stress, each stress implies a decrease of wing size. Size variance was affected by several stressors, contrary to shape variance that was affected by none of them. Although wing size directional and fluctuating asymmetries were significantly affected by sinigrin, parasites and high temperatures, neither directional nor fluctuating shape asymmetry was significantly affected by any tested stressor. Parasites and high temperatures led to the strongest phenotype modifications. Overall size and shape were the most sensitive morphological traits, which contrasts with the common view that fluctuating asymmetry is the major phenotypic marker of stress

    Extending microevolutionary theory to a macroevolutionary theory of complex adaptations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/172863/1/evo14450_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172863/2/evo14450.pd

    Rare ecomorphological convergence on a complex adaptive landscape: Body size and diet mediate evolution of jaw shape in squirrels (Sciuridae)

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136355/1/evo13168.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136355/2/evo13168_am.pd
    corecore