8 research outputs found

    A multitype sticky particle construction of Wasserstein stable semigroups solving one-dimensional diagonal hyperbolic systems with large monotonic data

    Get PDF
    International audienceThis article is dedicated to the study of diagonal hyperbolic systems in one space dimension, with cumulative distribution functions, or more generally nonconstant monotonic bounded functions, as initial data. Under a uniform strict hyperbolicity assumption on the characteristic fields, we construct a multitype version of the sticky particle dynamics and obtain existence of global weak solutions by compactness. We then derive a LpL^p stability estimate on the particle system uniform in the number of particles. This allows to construct nonlinear semigroups solving the system in the sense of Bianchini and Bressan [Ann. of Math. (2), 2005]. We also obtain that these semigroup solutions satisfy a stability estimate in Wasserstein distances of all orders, which encompasses the classical L1L^1 estimate and generalises to diagonal systems the results by Bolley, Brenier and Loeper [J. Hyperbolic Differ. Equ., 2005] in the scalar case. Our results are obtained without any smallness assumption on the variation of the data, and only require the characteristic fields to be Lipschitz continuous and the system to be uniformly strictly hyperbolic

    Quantum Mechanical Corrections to Simulated Shock Hugoniot Temperatures

    No full text
    The authors present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a grueneisen equation of state and a quasi-harmonic approximation to the vibrational energies, they derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. They have used our novel technique on ab initio simulations of both shock compressed water and methane. Our results indicate significantly closer agreement with all available experimental temperature data for these two systems. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or covalent solids, and has the potential to decrease the large uncertainties inherent in many experimental Hugoniot temperature measurements of these systems
    corecore