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stable semigroups solving one-dimensional diagonal
hyperbolic systems with large monotonic data

Benjamin Jourdain and Julien Reygner

ABsTrACT. This article is dedicated to the study of diagonal hyperbolic systems in one space
dimension, with cumulative distribution functions, or more generally nonconstant monotonic
bounded functions, as initial data. Under a uniform strict hyperbolicity assumption on the
characteristic fields, we construct a multitype version of the sticky particle dynamics and obtain
existence of global weak solutions by compactness.

We then derive a LP stability estimate on the particle system uniform in the number of
particles. This allows to construct nonlinear semigroups solving the system in the sense of
Bianchini and Bressan [Ann. of Math. (2), 2005]. We also obtain that these semigroup solutions
satisfy a stability estimate in Wasserstein distances of all orders, which encompasses the classical
L! estimate and generalises to diagonal systems the results by Bolley, Brenier and Loeper [J.
Hyperbolic Differ. Equ., 2005] in the scalar case.

Our results are obtained without any smallness assumption on the variation of the data, and
only require the characteristic fields to be Lipschitz continuous and the system to be uniformly
strictly hyperbolic.
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1. Introduction

1.1. Hyperbolic systems. A one-dimensional system of conservation laws is a differential equa-
tion of the form

(1.1) ou+ 9;(f(u)) =0, t>0, zeR,

where u = (u!,...,u?) : [0,400) x R — R? is the vector of conserved quantities, and f : R? — R?
is the fluzx function. When both f and u are smooth, it rewrites in the nonconservative form
(1.2) du+ A(u)d,u =0,

where A(u) = Df(u) is the Jacobian matrix of the flux function. If, for all u, the matrix A(u) is
diagonalisable and has real eigenvalues A!(u) > A2(u) > --- > A4(u), the system is called hyperbolic
and the functions \',...,\? are its characteristic fields. Hyperbolic systems naturally arise in
continuum physics [23] and are the object of an intense mathematical research [50, 51, 18, 36].

A system of the form (1.1) or (1.2) is strictly hyperbolic if A!(u) > A2(u) > --- > A%(u) for all
u. Global weak existence results for the strictly hyperbolic one-dimensional Cauchy problem

{ Ou+9,(f(a)) =0,

(1.3) u(0,z) = ug(w),

go back to Glimm [35], under the assumption previously introduced by Lax [43] that the char-
acteristic fields A\',..., A% be either genuinely nonlinear, or linearly degenerate. Under the same
assumption, an alternative method to construct global weak solutions to the Cauchy problem (1.3)
is the Front Tracking approximation, which was introduced by Dafermos [22] in the scalar case

d =1 and then extended to systems of conservation laws by DiPerna [27], see also [17, 48, 3]. A
version of this method that does not refer to any genuine nonlinearity nor linear degenerescence
assumption on the characteristic fields was later introduced by Ancona and Marson [1]. Both the

Glimm scheme and the Front Tracking method provide existence for initial data up = (ug, ..., ud)
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belonging to the class of functions with bounded variation (BV), and having a small total vari-
ation. On the other hand, the vanishing viscosity approach [0, 7| provides L' stable semigroups
defined on a set of BV functions containing functions with sufficiently small total variation, that
yield weak solutions to the system (1.2). The convergence of the vanishing viscosity approach, as
well as the uniqueness of L! stable semigroup solutions to (1.2), were proved by Bianchini and
Bressan [7]. The Bianchini-Bressan solution was also proven to be the limit of Glimm and Front
Tracking approximations |7, 1].

Outside of the BV setting, the theory of systems of conservation laws with L initial data was
developed by DiPerna [28]. By compensated compactness, under weak structural conditions, it was
first proved that systems of d = 2 equations in conservative form admit global entropy solutions
for L*° initial data. Uniqueness for such systems starting from initial data with large variation was
obtained by Bressan and Colombo [20] under a stability assumption on the flux function. For d > 3
equations, unless the system is in the Temple class [2, 4] or has coinciding shocks and rarefaction
curves [5], no existence, uniqueness nor stability theory is available without a smallness assumption
on the variation of the initial data.

1.2. Diagonal systems. For a strictly hyperbolic system of the form (1.2), let I*(u),...,I%(u)
and 71 (u),...,7%(u) refer to the respective left- and right-eigenvectors of the matrix A(u). Fol-
lowing [19], the system (1.2) is diagonalisable if and only if the Frobenius condition

vy, 7y e {1,...,d}  with 4,y # 7, {7y =0,

is satisfied, where {r,7'} = Drr/ — Dr/r refers to the Poisson bracket. Up to a change of variable,
the system then reduces to the diagonal form

(1.4) Vye{l,...,d}, O’ + N7 (0)dpu” = 0.

According to [51, Theorem 12.1.1], the diagonal system (1.4), when strictly hyperbolic, admits a
conservative form

di(9(u)) + 9z (h(u)) =0
if and only if, for all v,~',7” € {1,...,d} distinct,

Dur A7 (1) B D,y A (1)
el R (m) 0 (m) |

The system is then called a rich system. Any diagonal strictly hyperbolic system of d = 2 equations
is clearly rich. On the other hand, any strictly hyperbolic system in conservative form 0;v +
9:(f(v)) = 0 composed of d = 2 equations may be diagonalised by choosing u!(v) and u?(v) two
Riemann invariants respectively associated with the first and second fields of eigenvectors of the
Jacobian matrix D f(v).

This article is dedicated to the study of the Cauchy problem for the diagonal system (1.4) where,
for all v € {1,...,d}, u{ is a nonconstant, monotonic and bounded function on R. Such initial
data can be interpreted as cumulative distribution functions of bounded measures of constant sign,
and up to rescaling, there is no loss of generality in assuming that these measures are probability
measures. Diagonal systems with monotonic data have attracted a particular attention on account
of their appearance in the dynamics of dislocation densities or in isentropic gas dynamics. We
refer to the works by El Hajj and Monneau [33, 34], whose existence, uniqueness, regularity and
stability results are discussed in §2.4.5 and §2.6.3 below.

1.3. Main results and outline of the article. In this article, we consider the diagonal Cauchy
problem
O + X7 (n)d,u” =0,

uY(0,2) = uf(x),

(1.5) Yy e{1,...,d}, {

where u = (u',...,u%) : [0,4+00) x R — [0,1]%, the characteristic functions !, ..., A\? are defined
on [0, 1]d and we assume that there exist probability measures m',...,m¢ on the real line such
that

Yy e{l,...,d}, ud = Hxm),
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where H x - refers to the convolution with the Heaviside function H. In other words, for all
v e{l,...,d}, uj is the cumulative distribution function of m?.
In the scalar case d = 1, the conservative form of (1.5) is the scalar conservation law

(16) { 0wt + 05 (A(u)) =0,

u(0,2) = up(x),

with A’ = X and ug = H * m, where m is a probability measure on R. Brenier and Grenier [16]
proved that the entropy solution of (1.6) describes the large-scale behaviour of the Sticky Particle
Dynamics, under which finitely many particles evolve on the real line by sticking together at
collisions with preservation of the total mass and momentum. We also refer to [10] for a proof of
the large-scale limit in a more general framework. Independently of this representation, stability
estimates in Wasserstein distance for the entropy solution of (1.6) were derived by Bolley, Brenier
and Loeper [9].

In the present article, we introduce a multitype version of the Sticky Particle Dynamics, where
particles have a type v € {1,...,d} and only stick with particles of the same type. Using this
Multitype Sticky Particle Dynamics, we obtain the following three main results, under the generical
assumption that the system (1.5) be uniformly strictly hyperbolic.

Theorem 2.4.5 asserts the existence of a global weak solution for the Cauchy problem (1.5).
More precisely, we show that the large-scale behaviour of the Multitype Sticky Particle Dynamics is
described by functions u : [0, +00) x R — [0, 1] solving the Cauchy problem (1.5) in an appropriate
sense, to which we refer as a probabilistic solution. We use a tightness argument for the particle
system, which does not allow to identify its possibly multiple large-scale limits.

Theorem 2.5.2 is a stability result on the Multitype Sticky Particle Dynamics. We carry out a
detailed pathwise analysis of the evolution of the dynamics with two different initial configurations
and thereby obtain L? stability estimates, for all p € [1,400]. The important point here is that
our stability constants are uniform with respect to the number of particles, which allows us to pass
to the large-scale limit in these estimates.

Theorem 2.6.5 combines the two previous results and finally asserts that our solutions are
nonlinear semigroups, stable in Wasserstein distances of all orders (order 1 corresponds to the
usual L' stability), which generalises the results of [9] to the diagonal system (1.5). Besides,
these solutions satisfy the uniqueness conditions of Bianchini and Bressan [7] corresponding to
our definition of probabilistic solutions. This allows us to identify all the large-scale limits of the
Multitype Sticky Particle Dynamics and to finally obtain a complete convergence result for the
particle system.

Our approximation procedure can be compared with the Glimm scheme or the Front Tracking
method, as opposed to the vanishing viscosity approach, in the sense that it consists in constructing
a piecewise constant solution to the hyperbolic system with initial data given by a discretisation
of ug, ... ,ug. Besides, similarly to [19, 21], our stability estimates are obtained by taking the limit
of uniform discrete stability estimates.

Working with cumulative distribution functions allows us to employ classical tools from prob-
ability theory, and to some extent, from optimal transport. As an example, we shall use weak
convergence and tightness of probability measures in place of the usual Helly Theorem in order
to construct weak solutions. Likewise, stability estimates in Wasserstein distance shall naturally
arise from discrete L? estimates on our particle system when described by the increasing order of
the positions.

A striking remark is that the diagonal structure of the system (1.5) combined with the mono-
tonicity of the initial data permits to obtain global existence, uniqueness and stability results
without any smallness assumption on the variation of the initial data. This is done at the price of
assuming that the strict hyperbolicity of the system holds uniformly on [0, 1]?. Let us also mention
that our results involve no such condition as genuine nonlinearity or linear degenerescence of the
characteristic fields.
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The main definitions and results of the article are summarised and discussed in Section 2. Then
the article is divided into two parts. Part 1 is dedicated to the introduction of the Multitype Sticky
Particle Dynamics and to the proof of Theorem 2.4.5, our global weak existence result. We also
describe a few properties of those solutions to the system (1.5) that are obtained by Theorem 2.4.5.
Part 2 is concerned with stability results and contains the proof of the discrete stability estimates
of Theorem 2.5.2, as well as the construction of semigroup solutions given by Theorem 2.6.5. Some
technical proofs are postponed to an Appendix section, where a list of notations is also provided.

1.4. Notations and conventions. We shall use the following notations and conventions through-
out the article. A complete notation index is provided in Appendix B.

1.4.1. Bold symbols. Generically, bold symbols, such as u in (1.5), refer to objects of size d. Their
coordinates, such as u!,...,u%, are written with thin characters, and labelled with a Greek letter
superscript. This letter is usually v € {1, ..., d} or «, 8 when two distinct coordinates are at stake,

in which case we take the convention that o < f3.

1.4.2. Algebraic notations. For all z,y € R, we let x Ay := min{z,y} and z Vy := max{z,y}. The
integer part of x € [0, +00) is denoted by |z]|. Given two sets A and B, the union set AU B shall
be denoted by A LI B whenever AN B = {).

1.4.3. Set of probability measures. Given a metric space E, the set of Borel probability measures
on E is denoted by P(E). It is endowed with the topology of weak convergence, which is defined
with respect to the set of continuous and bounded functions from F to R.

Given two metric spaces E, F, a measurable function g : E — F, and p € P(E), the image
(or pushforward measure) of u by the function g, denoted by po g=t € P(F), is defined by
(pog 1) (B) = u(g~1(B)) for all Borel sets B C F.

1.4.4. Function spaces. Given an interval I C R, we denote by C(I,R) (resp. C(I,R%)) the set of
continuous functions on I with values in R (resp. R?). We similarly denote by C1:°([0, +o0) x R, R)
(resp. CLO([0,4+00) x R,RY)) the set of functions of (¢,7) € [0,+00) x R with values in R (resp.
R?) having compact support and a continuous time derivative (resp. of which each coordinate has
a continuous time derivative). We finally denote by CL1([0, +00) x R,R) C CLO([0, +00) x R, R)
the subset of functions with a continuous space derivative.

The set of locally integrable functions on R with respect to the Lebesgue measure is denoted
Ll .(R). Given a probability measure m € P(R), we denote by L!(m) the set of integrable functions
with respect to m.

1.4.5. Probability measures on the space of sample-paths. Given an interval I C R, we endow the
sets C(I,R) and C(I,R?) with the topology of the uniform convergence if I is compact, and of the
locally uniform convergence otherwise. Both these topologies can be metrised.

The set of Borel probability measures on C([0, +00), R%) is denoted

M := P(C([0, +o0),RY)).

For all © € M, we denote by ] the marginal distribution of the v-th coordinate at time ¢ > 0
¥

under p; that is to say, p) := po (7)) !, where
oy C([0, +00), R%) — R
Ty - 1 d
(X1(s)y..., X%8))s>0 +— X(¢)
is the usual projection operator. Since 7} is continuous, the Mapping Theorem |3, Theorem 2.7,
p. 21] implies that the mapping p +— W} is continuous for the topology of the weak convergence on
M and P(R).
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2. Main definitions and results

This section contains the main definitions and results of the article. The various assumptions
we shall make on the characteristic fields \',...,\% are gathered in Subsection 2.1. A short
presentation of the Multitype Sticky Particle Dynamics is given in Subsection 2.2. Cumulative
distribution functions play a crucial role in our work, therefore basic definitions and properties are
recalled in Subsection 2.3.

The notion of probabilistic solution to the Cauchy problem (1.5) is defined in Subsection 2.4,
where the weak existence result of Theorem 2.4.5 is stated. The discrete uniform stability esti-
mates of Theorem 2.5.2 are stated in Subsection 2.5, while our main Theorem 2.6.5 is detailed in
Subsection 2.6.

2.1. Assumptions on the characteristic fields. Our results are stated under various assump-
tions on the function

A= 00) [0,1)¢ = RY,

that we now list.

We first introduce continuity conditions.

(C) Continuity: for all v € {1,...,d}, the function A" is continuous on [0, 1]%.
Under Assumption (C), the functions A!,..., A% are bounded and we define the family of finite
constants Lc p, p € [1,4+00], by

d 1/p
(21) VpelLtoo), Lopi= (3 sup W@P| .  ILowi= sup sup V().
=1 uelo,1]¢ 1<y<due€[0,1]¢
(LC) Lipschitz Continuity: there exists Lic € [0, 4+00) such that

d
vye{l,...,d}, vuve[0,1]’,  N(u)—XN(v)[<Lic Y [ =07,

=1

Of course, Assumption (LC) is stronger than Assumption (C).

The following Uniform Strict Hyperbolicity condition is crucial in this article, since it enables
us to define the Multitype Sticky Particle Dynamics.

(USH) Uniform Strict Hyperbolicity: there exists Lysn € (0, +00) such that

Vye{l,...,d—1}, inf AY(u) — sup A(u) > Lysg.
uelo,1]¢ uelo,1]4

Note that, under Assumptions (C) and (USH), the triangle inequality implies that Lysg < Lo A
2L¢ 00

2.2. The Multitype Sticky Particle Dynamics. The precise construction of the Multitype
Sticky Particle Dynamics (MSPD) is detailed in Section 3. In this subsection, we only give a
formal description of the MSPD and introduce the notations that will be necessary to state the L
stability estimates of Theorem 2.5.2.

The MSPD describes the evolution of d x n particles on the real line. For all v € {1,...,d} and
k € {1,...,n}, the k-th particle of type ~ is labelled by the symbol « : k, and we shall denote by

Pl={y:kye{l,...,d},ke{l,...,n}}
the set of all such symbols.
Let us define the polyhedron D,, C R™ by

Dy :={(z1,...,2p) ER" 127y <--- <, }.

The configuration space for the Multitype Sticky Particle Dynamics (MSPD) is the Cartesian
product DY, a typical element of which is denoted

X = (xg)v:kEPga

. . . . . . . ’Y
so that in the configuration x, the position of the particle v : k is z;.
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In a configuration x € D¢, the rank of the particle v : k& among the system of particles of type
~" € {1,...,d} is the number of particles of type 7’ located on the left of  : k (i.e. which position
is lower than z). Informally, the MSPD started at the configuration x is defined as follows:

e the mass of each particle is 1/n, and the initial velocity of a particle is determined by its
rank among each system of particles of a given type,

e particles travel at constant velocity until they collide with other particles,

e when two particles of the same type collide, they stick together into a cluster, and the
velocity of the cluster is determined by the conservation of mass and momentum,

e when two clusters of different types collide, the velocities of every particle is updated with
respect to its rank in each system after the collision.

The initial velocity of the particle 7 : k£ as a function of its rank among each system is given under
Assumption (C) by an appropriate discretisation of the function A7 appearing in (1.5), see (3.6) in
Section 3. Under the further Assumption (USH), we show that the dynamics described above is
well defined at all times and for all initial configurations. Denoting by ®(x;t) = (®)(x;t))y.xepa
the positions of the particles at time ¢ > 0 in the MSPD started at the configuration x, we thus
define a flow (®(-;t));>0 in DZ. A typical trajectory of the MSPD is plotted on Figure 1.

>
>
7
57,

/AN

~7
2

N N\ Z __?

7

——y 7

>

FIGURE 1. A typical trajectory of the Multitype Sticky Particle Dynamics with
d = 4 types and n = 10 particles per type. The horizontal coordinate refers to
the physical positions of the particles, while the vertical coordinate describes the
time. Each color is associated with a type of particle. Particles of the same type
stick together at collisions, and the velocities may be modified at collisions with
clusters of different types.
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Remark 2.2.1. In the scalar case d = 1, the MSPD reduces to the Sticky Particle Dynamics intro-
duced by Brenier and Grenier [16] in the context of the study of general scalar conservation laws.
The construction of such an adhesion dynamics in the physics literature is due to Zel’dovich [55]
and is related to the modeling of large-scale structure in the universe, as well as elementary models
in turbulence [53]. In particular, it played an important role in the mathematical understanding of
the behaviour of pressureless gases [12, 37, 32, 15]; in this direction, we highlight the recent work
by Natile and Savaré [14] which relies on similar Wasserstein estimates as ours.

Remark 2.2.2. In the scalar case d = 1, the viscous version

{ Avu + 0x(A(u)) = ed?u,
u(0,2) = up(x),

of the scalar conservation law (1.6) is known to describe the large-scale limit of systems of rank-
based interacting diffusions [10, 11, 38]. In [41], it was proved that, when e vanishes, such systems of
diffusions converge to the Sticky Particle Dynamics, the large-scale limit of which is described by the
entropy solution to the corresponding inviscid conservation law [16, 10]. Theoretical and numerical
approximation procedures of the conservation law (1.6) based on this probabilistic representation
and combining the small-noise and large-scale limits where constructed in [39, 42], where fractional
diffusions are also considered.

As far as the case d > 2 is concerned, a multitype system of rank-based interacting diffusions
was introduced in [17, Chapitre 7] in order to approximate the solution to the parabolic system

Opu” + NV (u)0pu” = ed?u?,

uY(0,2) = uf(x).

vy e{l,...,d}, {

Using the arguments introduced in [41], the MSPD can be shown to describe the small-noise limit
of this system.

2.3. Cumulative distribution functions. In this subsection, we give a few definitions and in-
troduce some notations related to cumulative distribution functions (CDFs).

Definition 2.3.1 (Cumulative distribution function). A cumulative distribution function on the
real line is a nondecreasing and right continuous function F : R — [0, 1] such that
mgggofmw)::07 wggioﬁxx)::L

It is an elementary result of measure theory [16, Theorem (4.3), p. 5] that a function F is a
CDF on the real line if and only if there exists a probability measure m € P(R) such that, for all
x € R, F(z) = m((—o0,x]). In this case, F is said to be the CDF of m, and we denote F' = H *m,
where H refers to the Heaviside function H(z) := 1{;>0)-

CDFs are generically discontinuous and therefore can have jumps, defined as follows.

Definition 2.3.2 (Jumps). Let F be a CDF on the real line. For all x € R, the jump of F at
is defined by

where
F(z™):=lmF(y).
ytz
Certainly, for all € R, AF(z) = m({z}), and whenever the latter quantity is positive, then x
is called an atom of m. Note that the set of atoms of m is at most countable, therefore dz-almost
everywhere, AF(z) = 0.

If F is the CDF of m, then, for all f € L'(m), the expectation of f under m is indifferently
denoted
[ s@mn) = [ j@are)
zeR R
The expectation of f under m can also be expressed in terms of the pseudo-inverse of F', defined
as follows.
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Definition 2.3.3 (Pseudo-inverse). Let F' be a CDF on the real line. The pseudo-inverse of F' is
the function F~1:(0,1) = R defined by

(2.2) F~'(v) :=inf{z € R: F(z) > v}.
The following properties of the pseudo-inverse are straightforward.

Lemma 2.3.4 (Properties of the pseudo-inverse). Let F' be a CDF on the real line.

(i) The function F~1 : (0,1) — R is nondecreasing, left continuous with right limits. It is
countinuous outside of the countable set {v € (0,1): Iz <y € R, F(x) = F(y) = v}
(ii) For allv € (0,1), F(F~(v)7) <v < F(F~1(v)).
(iii) For all x € R, for all v € (0,1), F~*(v) < z if and only if v < F(z).

The expectation of f under m satisfies the following change of variable formula [16, Proposi-
tion (4.9), p. 8]

Lemma 2.3.5 (Change of variable formula). Let F' be the CDF of the probability measure m on
R. Then, for all f € L'(m),

1
T T) = ~(v))dw.
| tearw = [ ot

Let us point out the fact that, with the notations introduced in Subsection 1.4 above, a re-
formulation of Lemma 2.3.5 is m = U o (F~1)7! where U refers to the Lebesgue measure on
[0,1].

Lemma 2.3.6 (Weak convergence and CDFs). Let (my)n>1 be a sequence of probability measures
on R and m € P(R). Let F,, :== H xm,, and F := H xm. Then m,, converges weakly to m if
and only if, for all z € R such that AF(z) = 0, F,(x) converges to F(z). In this case, F, *(v)
converges to F~1(v) at all continuity points v of F~, therefore dv-almost everywhere in (0,1).

The equivalence between weak convergence and convergence of the CDF outside of the atoms
of the limit is a classical result, see for instance [31, Theorem 2.2, p. 86]. The almost everywhere
convergence of pseudo-inverses is often used as a proof of the Skorokhod Representation Theorem
on the real line, see [31, Theorem 2.1, p. 85].

We finally introduce a few notations for functions u : [0,+00) x R — [0, 1] such that, for all
t >0, u(t,-) is a CDF on the real line. For such a function, for all ¢ > 0,
e the jump of u(t, ) at € Ris denoted by Ayu(t, z) and worth Ayu(t, z) := u(t, z)—u(t,z7),
where u(t, z7) := limy, u(t, y),
e if m € P(R) is such that u(t,-) = H *m, then for all f € L!(m), the expectation of f under
m is denoted

/ flx)ym(dz) = / fx)dzu(t, ©),
Tz€R z€R
and we have
1
[ t@dauttn = [ f i) o) de
z€R v=0
where u(t,-)~1(v) refers to the pseudo-inverse of the CDF wu(t, -).

2.4. Probabilistic solutions to the system (1.5). In this subsection, we introduce the notion
of a probabilistic solution to the Cauchy problem (1.5). Probabilistic solutions have to be thought
of as weak solutions u = (ul, ..., u?) of (1.5) having the property that u?(t,-) remains a CDF on
the real line at all times. Since such functions can be discontinuous, we need to take a convention
to define the product A7 (u)d,u”. This task is carried out in §2.4.1. The existence of probabilistic
solutions, based on an approximation procedure by the vector of empirical CDFs of the MSPD, is
stated in §2.4.2. A description of arbitrary probabilistic solutions in terms of trajectories in R? is
discussed in §2.4.3, and the continuity of solutions obtained at §2.4.2 under diagonal monotonicity
conditions on the characteristic fields is investigated in §2.4.4. Finally, the links between our results
and those of [33] are discussed in §2.4.5.
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2.4.1. Definition of probabilistic solutions. The main difficulty in defining a notion of solution to
the system (1.5) is to make sense of the product A7 (u)d,u”. Indeed, since we expect u”(t,-) to be a
CDF on the real line for all t > 0, the function A7(u) is generically discontinuous at the atoms of the
measure J,u”, and therefore this product cannot be defined in the distributional sense. Although
there has been several works [24, 13] dedicated to the problem of giving a suitable definition to
the product between a discontinuous function and a Radon measure in the context of transport
equations, we shall use the particular connection between A\7(u) and 9,u” in order to provide a
definition such that, in the scalar case, the product A(u)d,u coincide with the conservative form
0:(A(u)), see Remark 2.4.3 below.

Let u = (ul,...,ud) : [0,400) x R — [0,1]¢ be a measurable function such that, for all v €
{1,...,d}, for all t > 0, the function u”(¢,-) is a CDF on the real line. For all v € {1,...,d}, let
us define the function A7{u} : [0,400) x R = R by

1
(2.3) N {u}(t, z) := /920 N (ul(t,z), ., (1= 0 (7)) + 0u (¢, 2), ... ul(t,z)) df,

which will play the role of a substitute for A7 (u(¢,x)) in (1.5). Note that the function A7{u} can
be rewritten under the more explicit form

AH{ua}(t, z) = A7 (u(t, z))
if Ayu(t,x) =0, and
A{u}(t,x) = ;/M(t . A (uh(t,2), .. TN ), w T (), ul(t ) dw
Apu (t, ) S (t,2-) e U ey ’
otherwise.

We are now ready to introduce our notion of probabilistic solution.

Definition 2.4.1 (Probabilistic solution to (1.5)). Under Assumption (C), a probabilistic solution
to the hyperbolic system (1.5) is a measurable function

u=(u',...,u?) :[0,400) x R — [0,1]%,
such that:

(i) for allt >0, for all v € {1,...,d}, u(t,-) is a CDF on the real line,
(ii) for all test functions p = (p',..., %) € CLO([0, +00) x R, R?),
d

; ( /t j:o /x eRatW(t,I)W(t,x)dde /z . w(o,x)ug(a:)dx)
= Z/t / (¢, )N {ud (¢, 2)du (t, 2)dt,

where X\Y{u} is defined by (2.3) above.
Remark 2.4.2. In the point (ii) of Definition 2.4.1, the integral term

/ER OV (t, )N {u}(t, x)du (¢, x)

has to be understood as the expectation of the bounded measurable function 7 (¢, )A\"{u}(t,-)
under the probability measure with CDF u7(¢,-). In addition, the point (ii) only makes sense if
the function

m/ (e, )N b (4 2)dpu (1 2)

is measurable on [0, +00). This property is obtained by first applying the change of variable formula
of Lemma 2.3.5 to rewrite

1
/ OV (t, o)A {ub(t, x)du (¢, x) = / @ (¢, (t, )" () M {u} (Lu7(t, ) (v)) do.
T€R v=0
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Now it is easily checked that the function

(t,0) = 7 (a7 (t, )7 H0) A {ud (Lu? ()7 (v)
is measurable and bounded on the product space [0, 400) x (0, 1), so that the conclusion follows
from the Fubini Theorem.

Remark 2.4.3. In the scalar case d = 1, and with the definition of A{u} above, we have

(2.4) Ox (A(u(t, ) = Mu}(t, z)dsu(t, z),
in the distributional sense, where we recall that A is the antiderivative of A (this is a consequence
of the chain rule formula for functions of finite variation [16, Proposition (4.6), p. 6]). As a

consequence, a probabilistic solution in the sense of Definition 2.4.1 is nothing but a weak solution
to the scalar conservation law (1.6), which remains a CDF at all times.

2.4.2. Existence of probabilistic solutions. We first define the empirical distribution and the vector
of empirical CDFs of the MSPD.

Definition 2.4.4 (Empirical distribution and vector of empirical CDFs of the MSPD). Under
Assumptions (C) and (USH), for all x € D2, the empirical distribution of the MSPD started at x
is the probability measure

Sl’—‘
(3=
>
’9‘
-
N
=

----- P (x5t)) >0 € M.
k=1

The vector u[x] = (ul[x],...,u[x]) of empirical CDFs of the MSPD started at x is defined by,
for ally € {1,...,d},

(25) V(t,I) € [Oa +OO) X Ra ’U”Y[ ]( ) =H x Ht Z]l{{ﬂ (x;t)<z}>
and we also let

1 n
(2.6) Vr € R, ug [x](x) = - Z Lpy<ey

With these definitions, we check in Section 4 that that, for all x € D¢, the MSPD started as x
satisfies the characteristic equation

(2.7) Vy: ke D2, ) (x;t) = N {ulx]}(t, @] (x;1)), dt-almost everywhere.

We then prove that this 1mphes that u[x] is an ezact probabilistic solution to the system (1.5), but
with discrete initial data (ul[x],...,ud[x]), see Proposition 4.2.1. Taking a sequence (x(n))p>1
of initial conditions such that uo[ (n)] approximates the initial data u] of (1.5), we combine

a tightness argument for the sequence of empirical distributions of the MSPD in the space of
sample-paths with a closedness property of the set of probabilistic solutions to obtain the following
existence theorem.

Theorem 2.4.5 (Convergence of the MSPD). Let Assumptions (C) and (USH) hold, and let us
fir m = (m',...,m?) € P(R)?. Let (x(n))n,>1 be a sequence of configurations such that, for all

n>1, x(n) € DZ, and assume that, for all v € {1,...,d}, the sequence of empirical measures

—25 n)EP

converges weakly to m”.

Then from any subsequence of (U[x(n)])n>1, one can extract a further subsequence (W[x(n¢)])e>1
weakly converging to some L € M, and such that the function u = (u',...,u?) : [0,+00) x R —
[0,1]? defined by

Vye (L.l V(o) €0, +00) xR, wl(t,a) = H T (@),

is a probabilistic solution to the system (1.5) with initial data (ug, ..., ud) defined by uf := Hxm?,
forally € {1,...,d}.
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The tightness argument is explicited in Proposition 4.3.1, while the closedness property is de-
tailed in Proposition 4.1.1. Of course, the probabilistic solutions that we obtain here may depend
on the choice of the subsequence (p[x(n¢)])¢>1, and in the absence of a uniqueness property, nothing
enables us to identify the corresponding limits. This uniqueness property is recovered by supple-
menting the definition of a probabilistic solution with further conditions, that are adapted from
Bianchini and Bressan [7], see Subsection 2.6 below.

Combining the continuity of the mapping pt — p; with Lemma 2.3.6, we rewrite the result of
Theorem 2.4.5 in terms of convergence of the vector of empirical CDFs of the MSPD as follows.

Corollary 2.4.6 (Convergence of the vector of empirical CDFs). Under the assumptions of The-
orem 2.4.5 and along the sequence (ng)e>1 provided by the latter, we have

ZETOO u¥[x(ne)|(t, x) = (¢, ),

for allt >0, for ally € {1,...,d}, and for all x € R such that AzuY(t,z) = 0.

In particular, for all ¢ > 0, for all v € {1,...,d}, the convergence in Corollary 2.4.6 holds da-
almost everywhere. Besides, by Dini’s Theorem, if w7 (¢, -) is continuous on R, then this convergence
holds uniformly on R.

2.4.3. Trajectories associated with probabilistic solutions. The equation (2.7) for the MSPD shows
that the quantiles of the probabilistic solution u[x] play the role of characteristics for the sys-
tem (1.5) — at least between collisions. In Section 5, we address the question of whether this fact
can be generalised to any probabilistic solution u, and therefore try to describe the evolution of the
trajectories (X, (t));>0 in RY associated with u, defined for all t > 0 by X,,(t) = (X1(t), ..., X4(t)),
with

X2(t) =" (t, ) (v).

We first prove in Proposition 5.1.1 that, for all probabilistic solutions u to (1.5), dv-almost
everywhere, the process (X (t))+>0 is Lipschitz continuous and that its velocity is bounded by the
minimal and maximal values of the characteristic field A7. This enables us to provide a probabilistic
representation of u as the flow of marginal distributions of some stochastic process (X(¢)):>o taking
its values in R%. In the scalar case and for system of pressureless gases, a similar representation
was constructed by Dermoune [25, 20].

We then discuss conditions under which the trajectories (X, (¢));>0 satisfy the characteristic
equation (2.7). We prove in particular, in Proposition 5.2.2, that an equivalent condition to this
characteristic equation is that the function u be a renormalised solution to (1.5) in the sense of
DiPerna and Lions [29]. However, the question of whether the solutions obtained by Theorem 2.4.5
are renormalised solutions in general is left open.

2.4.4. Continuity of rarefaction coordinates. Section 6 addresses the continuity of the probabilistic
solutions to (1.5) obtained by Theorem 2.4.5 when a characteristic field A7 satisfies some diagonal
monotonicity conditions. More precisely, under Assumption (LC), we shall say that v € {1,...,d}
is a rarefaction coordinate if 9~ A7 > 0, and a strong rarefaction coordinate if there exists ¢ > 0 such
that 9+ AY > ¢. Then we prove in Corollary 6.1.2 and Proposition 6.2.1 the following continuity
results: if u is a probabilistic solution obtained by Theorem 2.4.5,

e for all rarefaction coordinate v € {1, ...,d}, if v} is continuous on R then u? is continuous
on [0,4+00) x R,
e for all strong rarefaction coordinate vy € {1,...,d}, u” is continuous on (0, 4+00) x R, and

if ug is continuous on R then u” is continuous on [0, +00) x R.

Let us insist on the fact that, in the two statements, the condition implying the continuity of u”
does not depend on the monotonicity of the characteristic field A7, for v # .

2.4.5. Comparison with [33]. The construction of the Multitype Sticky Particle Dynamics is made
under Assumptions (LC) and (USH), and the global existence result of weak solutions stated in
Theorem 2.4.5 only requires these two conditions to hold.

El Hajj and Monneau [33] obtained global existence of continuous probabilistic solutions to (1.5)
when the probability measures m?, ..., m? admit densities with respect to the Lebesgue measure
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in Llog L(R) (that is to say, for all v € {1,...,d}, t — Oyu”(t,-) remains locally bounded in
LlogL(R)), without any strict hyperbolicity condition on the characteristic fields which, in turn,
are supposed to be C*°, globally Lipschitz continuous and such that the matrix (9,,A7(u) +
Bur X7 (1)), is positive semidefinite for all u € [0,1]%.

Notice that this last condition implies that 9.~ A (u) > 0 for all v € {1,...,d} and u € [0,1]¢ so
that all coordinates are rarefaction coordinates as defined in §2.4.4. By Corollary 6.1.2 in Section 6,
continuity of each rarefaction coordinate u”(¢,z) of our probabilistic solution holds under mere
continuity of the corresponding initial condition = — uj(x) and by Proposition 6.2.1, continuity
of (t,z) — u7(t,z) on (0,400) x R holds as soon as the characteristic field A7 is increasing in its
~-th coordinate.

2.5. Discrete stability estimates. For all p € [1,400], let us define the following (normalised)
LP distances on D¢.

Definition 2.5.1 (L? distances on D%). For all x,y € D, we define

n’

1/p
1
VpE[l,—i-OO), ||X_y||10 = E Z |$’Iz—y2|p 5
(28) v:kePZ
I = ¥lloo = sup oy —y;l-
v:kePg

Section 7 is dedicated to the proof of the following uniform L? stability estimates on the MSPD.

Theorem 2.5.2 (Uniform L? stability estimates for the MSPD). Under Assumptions (LC) and
(USH), for all p € [1,400], there exists L, € [1,+00) such that, for all x,y € D2, for all s,t >0,

[@(x55) = 2(y;D)llp < Lpllx = llp + |t = s|Loyp,

where we recall that Lc p is defined in (2.1), while £, is an explicit function of d, Lic and Lusu
but does not depend on n, see (2.9) below.

In the scalar case d = 1, then £, =1 for all p € [1,400]. For d > 2, the value of £, is given by
the following formulas:

L1:=(1440(d—1)exp(O(d—1)))exp (2@2d(d —1)exp (O(d — 1))) ,
(2.9) Loo = (1+6dL1) exp(O(d — 1)),
L= LPLIVP . p e (1,+00),

where © := 3LLC/LUSH-

Theorem 2.5.2 is the cornerstone of this article. Up to technical corrections, its proof is essen-
tially divided into two main parts. First, we assume that the initial configurations x and y are close
to each other, in the sense that the trajectories of the MSPD started at both x and y share the
same topological features. This permits to reduce the derivation of the stability estimates above
to a purely algebraic problem, which is solved by a careful but elementary analysis and thereby
provides a local stability estimate. Second, we use the geometrical properties of the trajectories of
the MSPD to construct a continuous path between arbitrary initial configurations x and y, along
which the local stability estimate can be integrated so as to obtain a global stability estimate. We
note that the idea of such a decomposition into a first local step and a second interpolation step
echoes the proofs of L! stability estimates for hyperbolic systems by Bressan and Colombo [19]
and Bressan, Crasta and Piccoli [21].

2.6. Stability and semigroup properties. Since the discrete stability estimates obtained in
Theorem 2.5.2 are uniform in the number of particles, they are expected to be consistent with
the large-scale limit and therefore yield stability estimates on the solutions to the system (1.5)
constructed in Theorem 2.4.5. As we shall explain below, the natural distance to extend these
stability estimates is the Wasserstein distance, that we define in §2.6.1.

As a consequence of these estimates, we show that our solutions are semigroups. This prop-
erty enables us to use the Bianchini-Bressan uniqueness conditions [7] to roughly identify all the
semigroup solutions to (1.5). These results are summed up in Theorem 2.6.5 in §2.6.2.
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2.6.1. The Wasserstein distance. Our stability estimates are stated in Wasserstein distance, an
introduction to which can be found in Rachev and Riischendorf [45] or Villani [54].

Definition 2.6.1 (Wasserstein distance). Let m,m’ € P(R). For all p € [1,+00), we define the
Wasserstein distance of order p between m and m’ by

1/p
W,(m,m’) := inf (/ |z — x’|pm(dxdx')> :
m< (z,z’)ER?
where the infimum runs over all the probability measures m € P(R?) such that, for all Borel sets
A A CR,
m(A x R) = m(A), m(R x A"y =m/(A").
The Wasserstein distance of order oo is defined by

oo =i n.
Weo(m,m') pﬁlrfoowp(m,m)

Note that we allow the Wasserstein distances to take the value 400, therefore they should rather
be referred to as pseudo-distances [54]. For the sake of simplicity, we shall keep the denomination
distance. Besides, the existence of the limit in the definition of W, (m, m’) follows from Holder’s
inequality, which ensures that p — W, (m,m’) € [0, +0o0] is nondecreasing.

It is a peculiar feature of the one-dimensional case that the measure

m=Uo ((H+m)™", (H * m’)fl)_1 ,
where U refers to the Lebesgue measure on [0, 1], realises the infimum in Definition 2.6.1 for any
choice of p (see for instance [15, Theorem 3.1.2, p. 109]). We deduce the following characterisation
of the Wasserstein distance.

Lemma 2.6.2 (Optimal coupling). Let m,m’ € P(R) and denote F := Hxm, G := Hxm’. Then,

for all p € [1,400),
1/p

Wy (m,m’) = (/;0 [~ (v) —Gl(v)l”dv) :

while
Wao(m,m') = sup |[F(0) — G~L(v)].
v€(0,1)
Note that, in particular,
(2.10) Wl(m,m’) = ||F - G||L1(]R)~
Remark 2.6.3. In the case of empirical distributions, Lemma 2.6.2 provides a very convenient
expression of the Wasserstein distances. More precisely, let x = (21, ...,z,) and x’ = (2,...,2)) €
D,,, and let us define
_ 1 " 1) il " 0.
TR SN 0
k=1 k=1

Then, for all p € [1, +00),

and
Weoo(m,m') = sup |z — x|
1<k<n
The Cartesian product P(R)? is endowed with the family of distances W](Dd), p € [1,+00], defined
by, for all m = (m!,...,m%), m’ = (m’%,...,m'?) € P(R)?,

d 1/20
Vp € [L,400), W (m,m’):= (Z Wp<m”,m”)p> :
(2.11) =1

W (m,m’) := sup Weo(m?,m").
1<+<d
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Given x,y € D%, and letting

1 « 1 — , 1 — 1 —
e (2 I ) BT € S S A T
k=1 k=1
it is a straightforward consequence of Remark 2.6.3 that, for all p € [1,400],
(2.12) [Ix = yllp = WP (m, m).

2.6.2. Construction of a stable semigroup. The existence result of Theorem 2.4.5 does not depend
on the precise way in which the sequence (x(n)),>1 approximates the initial data (u,...,ug)
of (1.5). In order to construct semigroup solutions, it is now necessary to specify how to discretise
these data. To this aim, we introduce the following discretisation operator on P(R)<.

Definition 2.6.4 (Discretisation operator). For all n > 1, we define the discretisation operator
Xn : PR)? — DI by, for all m = (m?,...,m?) € P(R)¢, x,m = x, where, for all v: k € P2,

(2k+1)/(2(n+1))

z) = (n+ 1)/ (H +m”) ™! (w)dw.
w=(2k—1)/(2(n+1))

We can now state the main result of this work, which is based on the remark that, by (2.12),

the discrete stability estimates of Theorem 2.5.2 naturally yield Wasserstein stability estimates for
the solutions obtained as limits of the MSPD.

Theorem 2.6.5 (Convergence of the MSPD to a stable semigroup solution). Let Assumptions (LC)
and (USH) hold.

There exists a family of operators (S;)i>0 on P(R)? having the following properties:
(i) for all s,t >0, for all m € P(R)¢, S,;;m = S,S;m,
(ii) for all s,t >0, for all m,m’ € P(R)4, for all p € [1,+o0],

Wz()d) (Ssm, S;m’) < E,,WZ()d) (m,m’) + |t — s|Lc,p,
where Lg,, is defined in (2.1) and L, is defined in (2.9);
and such that, for all m € P(R)?, the function u : [0, +00) x R — [0,1]? defined by

vy e{l,...,d}, W (t,x) = H % (S m)(z),
satisfies:

(iii) the sequence of empirical distributions W[x,m| converges weakly to the measure tim] € M
defined as the image of the Lebesgue measure U on [0, 1] by the mapping

v (u(t, )N (v), .. Jul(t, ')71(1’))1520 )

(iv) the function u is a probabilistic solution to the system (1.5) with initial data (u}, ..., ud)
defined by ug = H xm”.

The proof of Theorem 2.6.5 is detailed in Section 8. It works in two steps: we first use the
stability estimates of Theorem 2.5.2 to prove that the solutions given by Theorem 2.4.5 with the
sequence of initial configurations given by the discretisation operator are semigroups and satisfy
the expected Wasserstein stability estimates. We then show that these semigroups are viscosity
solutions in the sense of Bianchini and Bressan [7], which allows us to identify all the semigroup
solutions and thus all the limits of the MSPD. We however prevent ourselves from calling our
semigroup solution a viscosity solution, as we do not actually prove that it is indeed the vanishing
viscosity limit of the solution to the system (1.5) with viscosity.

Note that, in Theorem 2.6.5, both sides of the inequality in (ii) may be infinite. Let us also
highlight the fact that, on account of (2.10), for p = 1, the point (ii) rewrites as a classical L!
stability estimate

d d
Dol (s) =0 (e < L1 [[07(0,-) =07 (0, )|y + [t = s|Le,n,
~y=1 y=1
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on the probabilistic solutions u = (u!,...,u%) and v = (v!,...,v%) to the hyperbolic system (1.5)
defined by

u(t, ) == H % (S m)(z), vV (t,z) = H * (5, m’)(z).

We finally remark that the results of Sections 5 and 6, namely the representation of the solutions
in terms of trajectories, and the continuity properties of rarefaction coordinates, obviously apply
to the probabilistic solutions to (1.5) given by the semigroup (S;):>o-

2.6.3. Comparison with [34]. Besides Assumption (USH), Theorems 2.5.2 and 2.6.5 are obtained
under the sole Assumption (LC). The assumptions made by El Hajj and Monneau in [34, Theo-
rem 1.1] to obtain uniqueness and L! stability of continuous vanishing viscosity solutions to (1.5)
under uniform strict hyperbolicity are more stringent: they assume moreover that the probability
measures m',...,m¢ admit densities in LlogL(R) and that d,~AY(u) > 0 for all v € {1,...,d}
and u € [0,1]4.

Under the assumption that the probability measures m', ..., m?% admit bounded densities, they
replace strict hyperbolicity by one of the following alternative conditions reinforcing the mono-
tonicity of the characteristic fields A7 in their y-th coordinate:

e J,\7(u) >0 for all u € [0,1]¢ and v,~" € {1,...,d} with v >,

e J,\7(u) <0 for all u € [0,1)% and ~,v" € {1,...,d} with v/ # =, as well as positive
semidefiniteness of the matrix (infyep,17¢ 9,/ A7 (w) + infyejo,1)a Oun AV (W)

® 0 A7) >3, (9, A7 (u))” forally € {1,...,d} and u € [0, 1]¢, where v~ = 0V (—v)
denotes the nonpositive part of v.

1

Part 1. Construction and properties of probabilistic solutions
3. The Multitype Sticky Particle Dynamics

In this section, we give a formal construction of the Multitype Sticky Particle Dynamics (MSPD).
We first recall some useful facts on the Sticky Particle Dynamics in Subsection 3.1. The proper
definition of the MSPD is given in Subsection 3.2, where a few elementary properties of this
dynamics are also stated.

3.1. The Sticky Particle Dynamics. In this subsection, we give a detailed introduction of the
Sticky Particle Dynamics and state a few properties of this dynamics.

3.1.1. Definition of the Sticky Particle Dynamics. Let us fix X = (A1,...,\,) € R”. For all
x = (21,...,2,) € D,, the Sticky Particle Dynamics started at x with initial velocity vector X is
described as follows.

First, the k-th particle has initial position z; and initial velocity Az, while its initial cluster is
determined by Definition 3.1.1.

Definition 3.1.1 (Initial clusters). The initial cluster of the k-th particle in the Sticky Particle

Dynamics started at x with initial velocity X is the largest set of consecutive indices {k,...,k} C
{1,...,n} such that:

o k<k<k,

[ ] :EE e IE’

o cither k=Fk, or for all j € {k,.... k — 1},

1 I 1 -
(3.1) — > == > .
Al v} k=7 w5

Clusters of particles travel at constant velocity between collisions, and stick together at collisions.
The velocity of a cluster between two collisions is given by the average of the initial velocities of
the particles composing the cluster. Denoting by

SN(xt) = (e1 N (x38), - .., ou[A(x31)) € Dny
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the positions of the particles at time ¢ > 0, we obtain a continuous process (¢p[\](x;t))s>0 taking
its values in D,,, that we call the Sticky Particle Dynamics started at x with initial velocity vector
A. Clearly, this process has the flow property that, for all s,¢ > 0,

PGt + 5) = SN (¢[A](x: 1); ).
Remark 3.1.2. It follows from a tedious but straightforward barycentric computation that if
{k,...,k} and {K,... ,El} are two sets of consecutive indices in {1,...,n} satisfying the three

conditions of Definition 3.1.1, then {k, ..., k}U{E, ... ,EI} also satisfies these conditions. Therefore
there is no ambiguity in the definition of the initial cluster of the k-th particle.

Definition 3.1.3 (Clusters and their velocity). We denote by clug[\]|(x;0) the initial cluster of the
k-th particle, and for t > 0, we denote by clug[\|(x;t) the largest set of indices {k,...,k} of the
particles sharing the same position as the k-th particle at time t, that is, such that

o A(x5t) = - = [Nl t) = - - = %[X](X;t).

For allt > 0, the set clug[\|(x;t) is called the cluster at time ¢ of the k-th particle in the Sticky
Particle Dynamics started at x with initial velocity .
Finally, the velocity of the cluster of the k-th particle at time t > 0 is defined by

wlea) = ———— Y X

|Chlk [)\] (X; t)l k' €clug [N (x;t)

where |c| refers to the cardinality of the set ¢, so that

(3.2) vt >0, oM (x;t) = 21 + /_0 vR[N (x; 8)ds.

Remark 3.1.4. Definition 3.1.3 can be completed by the following remarks.

(i) Asis shown in [16, Lemma 2.2], in the case ¢ > 0, the set clug[\](x;t) necessarily satisfies
the condition (3.1). The latter is called the stability condition.
(ii) As a consequence of the definition of the velocity of a cluster, we have, for all ¢ > 0,

. in \; <vp[N(x;t) < A
(3.3) Vk e {1,...,n}, i Aj < oR[A(x;t) < max. Aj

(iii) For all x € D,, and s,t > 0 such that s <¢, for all k € {1,...,n},
clug [N (x5 8) C clug [N (x;1).

Let us give a representation of the process (v1[A](x;%), ..., vp[A\](X;t))t>0, the proof of which can
be found in [41, Lemma 3.4].

Lemma 3.1.5 (Representation of the velocities). For all A € R”, for all x € D,,, there exist right

continuous processes (Y1[A(x;))i>0, - - - » (Yn41[A (X5 1) )i>0 with values in R such that, for allt > 0,

o 11[A(x51) = Yt [A(x58) = 0, B _ _
o forallk € {2,...,n}, v[N(x;t) > 0 and ye[A](x;8)(9r [N (x5t) — dr—1[N\](x;¢)) = 0,
and, for all k € {1,...,n},

ve[A(x:t) = X + A (x38) — [ (x: 1)

Remark 3.1.6. The processes (71[A\(X;t))i>0,- - - (Yn+1[A](x51)) >0 introduced in Lemma 3.1.5
can be interpreted as Lagrange multipliers associated with the constraint that ¢[\](x;t) remain in

the polyhedron D,,. More precisely, it is shown in [11, Lemma 3.4] that the process (¢[\|(x;t))¢>0
is the unique solution, in the sense of Tanaka [52], to the normally reflected equation

vt >0, x(t) =x + Mt + k(1)

at the boundary of D,,, where k(t) is a reflection term, the total variation of which only grows
when x(t) is at the boundary of D,,.

We complete this paragraph with the following lemma, which will be useful in the sequel of the
article.
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Lemma 3.1.7 (Extension of the stability condition). Let k,k € {1,...,n} such that k < k, and
such that (3.1) holds for all j € {k,...,k—1}. Then, for all E,EI such that k < k' < E <k, we

have

In other words, if one splits a cluster into several smaller clusters, then the leftmost and rightmost
clusters tend to get closer to each other.

Proof. If k' = k- 1, then the result is a straightforward application of the stability condition (3.1)
with j =k If k' < E - 1, then we define

1

1 k' k-1 1 k
Vleft *= 77 5 Z Ak, Umid ‘= =7, _ Z Ak, Uright ‘= —— Z Ak
E—E‘i‘lk:E k—@'—lk:E/H k—k—l—lk:?
Applying the stability condition (3.1) with j = E - 1, we obtain
—
E—kK -1
(1 — p1)Vleft + P1Umid > Uright, p1i= ——— € (0,1);
k —k
and applying the stability condition (3.1) with j = k&', we obtain
- K1
Vleft > P2Umid + (1 — p2)Uright, p2 = T € (0,1).
We conclude that viest > Vright- O

3.1.2. Local Sticky Particle Dynamics. Let us fix T > 0, x € D,,, and take a set K C {1,...,n}
having the property that

(3.4) Vk € K, clup [N (x;T) C K.

In other words, K is the union of a certain number of clusters at time 7. By (iii) in Remark 3.1.4, for
all t € [0,T7, all the particles of K belong to clusters contained in K. Writing K = {k1,...,k|k/},
it is clear that the process

(B (58, By ey [N (55 ))220
follows the Sticky Particle Dynamics in D)k, with initial position vector (Xpyy - ,:v;wﬂ) and
initial velocity vector (A, . .. ,Xk‘ K ). This is a consequence of the fact that, in the Sticky Particle
Dynamics, the interactions between particles are local: when some particles collide and stick
together, this does not affect the motion of the other particles.

Definition 3.1.8 (Local Sticky Particle Dynamics). As soon asT > 0,x € D,, and K C {1,...,n}

satisfy the condition (3.4), the process (¢r, [N(x;1), ...,k [N (x:t)) is said to follow the Local
Sticky Particle Dynamics on [0,T], in the set

Dk = {(xklv"'vxk\m) e RE . Ty, <0 < ka},
with initial velocity vector \g = (g, , . .. ,ka) € RE,
For 0 < t1 < ta, we shall also say that (¢, [N (x;t),.. Cs Pk, [A(x;t)) follows the Local Sticky

Particle Dynamics on [t1,t2] if
(D1 NG Ges t1)st = 1),y by N (BN (s 1) — 1)
follows the Local Sticky Particle Dynamics on [0,t2 — t1].

For all p € [1,4+00], we now give an estimation on the growth of the L? distance between two
realisations of the (Local) Sticky Particle Dynamics, with possibly distinct initial velocity vectors.
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Proposition 3.1.9 (L? stability for the Local Sticky Particle Dynamics). Let x,y € D,, and
MNEER™. Let T >0 and K = {ky, ..., ki } € {1,...,n} such that the processes

(¢/€1 [X] (X; t)v s 7¢k?\K\ [X] (X; t))tG[O,T]
and

(Or, [A1(y3 2); - -5 e [ (3 8)) o,y

follow the Local Sticky Particle Dynamics on [0, T, with respective initial velocity vectors \x and
T defined as above.

(i) For allt € ]0,T],
S 6 R6sT) - oelml T < 37 I8R5 ) — ol O] + (7 — ) 3 [Fe — ol
keK keK keK

(ii) In the case X =T, then for all t € [0,T), for all p € [1,+00),

ST IokNT) — N DI <Y oM (x:t) — dr [N (v3 ),

keK keK

and

sup | ¢r[A] (x; T) — dx[A](v; T)| < sup k[N (x5) — dx[A](v; 1))

keK

Proof. Without loss of generality, we assume that K = {1,...,n}, so that \x = X and Jij = 7.
Now, by (3.2), for all p € [1, +00),

Z |0k T) = dn [l (v TP = Y 1ok (x3 1) — o[l (v; )P
k=1

+Z / Pl [N (% 8) — du [l (y: ) P2 (6x [N (x: 5) — dul)(y: 9)) (e [N (s ) — wa[ml(y; )} ds,

where we take the convention that |2|P~2z = 0 for p € [1,2].
Using Lemma 3.1.5, we write, for all k € {1,...,n},

oA (x5 8) — o[ (v3 8) = Ak — T, + e [N (x58) = 1 [ (5 8) = el (73 8) + e [ (35 9)-
We shall prove below that, for all s € (¢, T],

(35) > lox[N(xss) = dilm (s )P (SN (x5 8) — ol (vs 9) L[N (x5 8) = e N (x59)} <03
k=1

then, by symmetry, the contribution of — {vx[f](y;s) — ve+1[F](y; s)} is also nonpositive, so that
we obtain

S lorN s T) — el (v TP <> kN (x5 t) — dulm (v3 1)
k=1 k=1

n T
+> (-} / plokN(x; 8) — ou ) (v; 8) [P~ (0r[M (x; 8) — du[E) (5 5))ds,
k=1 s=t

from which (i) and the first part of (ii) easily follow. We derive the second part of (ii) by letting
p grow to infinity after having taken the power 1/p of both sides of the inequality above.
Let us now prove (3.5). To this aim, we fix s € (¢,7] and perform an Abel transform to write

Z ok [N (x5 5) — orlm) (s 8) P2 (0[N (x5 8) — e[l (v3 8)) {7k [N (x5 8) — e [N (x5 8) }

n

=> wl O dr-1 [N (x5 8), b1 [E)(y; 5), o1 [N (x: 5), S 7 (73 ),

k=2
where

9 C 60 =1E=CPHE- Q) — € = PP - ¢),
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and we have applied Lemma 3.1.5 to remove 1 [A\](x; $) and y,,4+1[A](x; $). Using Lemma 3.1.5 again,
we recall that v,[A](x;s) > 0 and if v,[\](x;8) > 0, then ¢x_1[N(x;8) = dr[N(x; s), while we still
have ¢r_1[m](v;s) < ér[m](y;s). The conclusion of the proof now follows from the elementary
observation that if ¢’ = ¢ and ¢’ < {, then ¥(¢',{’,€,¢) <0. d

3.2. Definition of the MSPD. Let us now give a proper construction of the MSPD. First, in
order to define the initial velocities of the particles, we encode the global ordering of a configuration
x € D? in the set R(x) defined by

R(x) = {(a:4,8:j) € (P)? 1 a< B2l <z},
and we let N(x) refer to the cardinality of R(x).
Let us fix v : k € P4 and, for all o/ # -, define w].,(x) € [0,1] by

1 ,
E Z ]l{('y/:k/,'y:k)GR(x)} if /7/ <,

’ k=1
w:yyzk(x) = 1 n
— > Wekagrooy 7>
k'=1

Under Assumption (C), we can now define the initial velocity of the particle v : k in the MSPD
started at x by
B k/n L 1 J
(3.6) A(x):=n et A7 (w,lyck(X), e ,w;y:k (x),w,wz:k (x), ... ,w,yzk(x)) dw,

and we denote
(3.7) M(x) = (A(x),..., A (x) €eR”,  Ax):= (A (x),..., A x)) € R™)™

For all x € D%, we define the Multitype Sticky Particle Dynamics started at x, and denote by
(®(x;t))i>0, the continuous process taking its values in D¢ and constructed as follows: as long
as there is no collision between particles of different types, each system evolves according to the
Sticky Particle Dynamics with initial velocities given by (3.6) above. When particles or clusters of
different types collide, say at time ¢t* > 0, then the initial velocity of the particle v : k is updated
to the value A} (®(x;t*)).

Under Assumption (USH), and whatever the composition of the clusters in each system, the
velocity of a cluster of type « is always larger than the velocity of a cluster of type 5 if a < .
Therefore, the set R(x) contains the pairs of particles (« : 7, 8 : j) that will collide at a positive and
finite time in the MSPD started at x. At the first collision, say at time ¢* > 0, between clusters
of different types, then the fastest clusters cross the slowest clusters and the systems restart with
initial velocities determined by the set R(x) from which the pairs of particles (« : 4,8 : j) involved
in the collision have been removed.

The outline of this subsection is as follows: in §3.2.1, we introduce and state a few properties of
the Typewise Sticky Particle Dynamics, which simply describes the joint evolution of d systems of
sticky particles, that do not interact with each other. A proper construction of the actual MSPD is
made in §3.2.2. Continuity properties of this dynamics are stated in §3.2.3 and a peculiar formalism
to describe collisions is introduced in §3.2.4. Finally, we emphasise the fact that interactions remain
local in the MSPD in §3.2.5.

3.2.1. The Typewise Sticky Particle Dynamics. This paragraph is dedicated to the study of the
Typewise Sticky Particle Dynamcis, which is defined as follows.

Definition 3.2.1 (Typewise Sticky Particle Dynamics). Let X = (Xl, e ,Xd) be a family of d
vectors

N =(Q,...,x) eR".
The Typewise Sticky Particle Dynamics with initial velocity vector X is the flow (®[X](+t))i>0
defined on DY by, for all x = (x},...,x%) € D4,

V>0,  ®X(xt) = (SN ](x58), ., oA (% 8)).
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In other words, (®[A](;t))¢>0 describes the joint evolution of d systems of n particles, where
the system of particles of type v follows the Sticky Particle Dynamics in D,, with initial position
vector X7 := (z7,...,z)) € D, and initial velocity vector N e R™, independently of the other

systems.

Applying (i) in Proposition 3.1.9 with K = {1,...,n} to each system already yields the following
contraction property for the Typewise Sticky Particle Dynamics. Let us recall that || - ||; refers to
the (normalised) L! distance in D%, see (2.8).

Lemma 3.2.2 (L' contraction). For all X\, i € (R")?, for all x,y € D2, for all s,t > 0 such that
s <t,

1B (1) — By )1 < 1B () — By o)l + —— 37 %~ gl
v:ke P

Let x € DZ. In order to define the MSPD started at x in §3.2.2 below, we shall of course
be concerned with the Typewise Sticky Particle Dynamics with initial velocity vector S\(X) given
by (3.7), up to the first collision between particles of different types. Therefore, we introduce
the collision time %g[?z-l)lﬁ;j(x) associated with a pair (o : 4,8 : j) € R(x) as the time at which
the particles o : ¢ and 3 : j collide in the Typewise Sticky Particle Dynamics started at x. The
following lemma is a straightforward consequence of Assumption (USH) combined with (3.6), and
we do not give a proof.

Lemma 3.2.3 (Collision times). Under Assumptions (C) and (USH), let x € D¢ and (o : 4,0 :
§) € (PH? such that o < .
(1) If (a:4,0:7) & R(x), then, for all t >0,
A (x1) = 2] A)](x;t) + Lusnt.

(i1) If (a: 4,8 : 5) € R(x), then there exists a unique t =: %ocz?zl,lﬁ:j (x) > 0 such that

BF )] (x: 1) = BTN (x; ).

K2

Then, for all s € [0,71, (x)],

v lad,B:7
OFA)](x; 5) — BF[A(X)](x:5) > Lusu(F5ets; (%) — 5),

. ~coll
while, for all s > 755 5.,(%),

YA (x;8) — DVA)](x;8) > Lusu(s — T (%))-
For all x € D2, we now define t*(x) by

—+ o0 if N(x :O,
t*(x):z{ ()

(38) s fxcoll . .4 1
min{ 755 5.;(x), (a 14,8 :j) € R(x)} € (0,+0c)  otherwise.

For all x € D% such that N(x) > 1, we let x* := ®[X(x)](x;¢*(x)). The following corollary
of Lemma 3.2.3 is a straightforward consequence of the flow property and the continuity of the
trajectories for the Typewise Sticky Particle Dynamics, therefore we do not give a proof.

Corollary 3.2.4 (Evolution up to t’:(x)) Under the assumptions of Lemma 3.2.5, let x € D¢,
t < t*(x) and let us denote x' := ®[A(x)](x;t). Then R(x') = R(x), A(X') = A(x) and t*(x') =
t*(x) —t. In addition, if N(x) > 1, then x* = x* and R(x*) is a strict subset of R(x), so that
N(x*) < N(x).

3.2.2. Construction of the MSPD. We are now ready to define the MSPD started at x € DZ.
Definition 3.2.5 (Multitype Sticky Particle Dynamics). Under Assumptions (C) and (USH), for
all x € DY, the Multitype Sticky Particle Dynamics started at x is the process (®(x;t))i>0, with
values in D2, defined by

A (x;t) it <t(x),

vt 20, ¢WWV:{wf¢_f@»@ﬁ2fQ»
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Since N(x) is finite and Corollary 3.2.4 asserts that, for all x € D such that t*(x) < +oo,
N(x*) < N(x), then the process (®(x;t));>0 is well defined on [0, +00).

Let us recall that, for the Sticky Particle Dynamics with initial position vector x € D,, and
initial velocity vector A € R™, for all k € {1,...,n}, the process (vi[A|(x; s))s>0 satisfies

vt > 0, du[N(x;t) = xp, —|—/ vR[N (x; 5)ds,

=0
see Definition 3.1.3. Now, for all x € DZ, for all v : k € P¢, we define the process (v} (x;s))s>0 by

v [A7T(x)](x7; s if s < t*(x),
(3.9) vy (x58) = {vz[(x*(, S)]_( o (x))) if s> t*Exi,
so that .
vt >0, Q) (x;t) =) + /5:0 v} (x;5)ds.
We easily deduce from this definition and (3.3)-(3.6) that, for all x € D%, for all ¢ > 0,
(3.10) inf A(u) <vl(xst) < sup A(u).

u€elo,1]4 uelo,1]4

We are now willing to define the cluster of a particle in the MSPD started at x, similarly to
Definition 3.1.3 above. In this purpose, we first introduce the notion of generical cluster.

Definition 3.2.6 (Generical clusters). A generical cluster is a pair (7, {k,...,k}), where v €
{1,...,d} is the type of the generical cluster and {k,...,k} is a set of consecutive indices in

{1,...,n}. To refer to the generical cluster ¢ := (v, {k,... ,k}), we shall rather use the notation
c=v:k---k.

Let us give a few rules to manipulate generical clusters.

The type of a generical cluster ¢ is denoted by type(c) € {1,...,d}.
The cardinality of a generical cluster ¢ = : k---k is denoted by |c| and worth k — &k + 1.
For ' : k' € P4 and c = : k- - -k, we shall write

v K ec
if and only if v/ =~ and k’ € {k,...,k}. This set membership relation allows us to define
the inclusion relation a C b between generical clusters a and b as well as the union set aUb
and the Cartesian product a X b of two generical clusters a and b.
e A generical cluster v : k- - -k with a single element + : k shall rather be denoted by ~ : k.
It will always be clear from the context whether the notation ~ : k refers to a particle (that
is, an element of P?) or to a cluster containing a single particle.

We can now define the cluster of a particle in the MSPD started at x € DZ.

Definition 3.2.7 (Cluster). The cluster of the particle v : k in the configuration ®(x;t) is the

generical cluster defined by
v elug [N (X)](x75t) if t < tH(x),
clu) (x*;t — t*(x)) if t >t (x),

clu (x;t) := {

where we recall that cluy [5\7 (x)](x7;t) was defined in Definition 3.1.3.

3.2.3. Continuity properties of the MSPD. In this paragraph, we state some continuity properties
for the MSPD in Propositions 3.2.8 and 3.2.9, the proofs of which are postponed to Subsection A.1
in Appendix A.

Proposition 3.2.8 (Time continuity and flow). For all x € D2, the process (®(x;t))i>0 has
continuous trajectories in DE. Besides, (®(+;t))i>0 defines a flow in D2.

For p € [1, +00], we recall the Definition 2.5.1 of the (normalised) L distance on D2, and denote

By(x,8) :={y € Dy : |[x = yll, <6},  Bp(x,0):={y € Dy :|lx—yll, <}
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Proposition 3.2.9 (Continuity with respect to the initial configuration). Let x € D%. Then, for
all € > 0, there exists 6 > 0 such that, for all y € B1(x,9),

sup [|®(x;1) — 2(y;t)[[1 <e.
t>0

3.2.4. Collision times. For all x € D2, for all (a: 4,8 : j) € (P4)? such that o < 3, let us define
TC?}}B;j (x) ;= inf{t > 0: F(x;t) > @?(x; t)}.

(e

Certainly, Assumption (USH) ensures that 75, (x) < +o0; while T;OZ“B ;(x) > 0 if and only if

a:t,B:]
(a:4,6:7) € R(x). Besides, it is easily checked that
+ o0 if N(x) =0,
t* =
x min{Tg‘;’il}ﬂ:j(x), (:4,8:j) € R(x)} if N(x) > 1.

For all (« : 4,8 : j) € R(x), T;?}}B:j (x) is nothing but the time at which the particles « : ¢

and 8 : j collide in the MSPD started at x. On the contrary, if (« : i,8 : j) € R(x), then

Tgol“,@ ;(x) = 0, which is somehow consistant with the intuitive idea that the collision between « : i

and [ : 7 happened ‘before the origin of times’, which we shall refer to as the virtual past.
Assumption (USH) implies that the collision times Tgf’i“ﬁ: ;(x) have properties similar to those de-

scribed in Lemma 3.2.3 for the collision times 7:;0111,8 ;(x) in the Typewise Sticky Particle Dynamics.
As a consequence, we state the following lemma without a demonstration.
Lemma 3.2.10 (Collision times in the MSPD). Let x € D% and (a : 3,58 : j) € R(x). Then
7ol (%) > 0, and:

o for all s € [0,75%, ()], @/ (x;5) —Bq’?(x; s) > Lusn(75%ils,; (%) — 5),

e for all s > Tocfil}ﬁ:j (x), DX (x;8) — i (x;8) > Lusu(s — Tocfil}ﬁ:j (x)).

3.2.5. Local interactions. We finally explain why the interactions in the MSPD remain local, in the
sense of §3.1.2. Indeed, according to Definition 3.2.5, if N(x) > 1, then at the first instant t*(x)
of a collision between two particles of different types, the whole system restarts with new initial

velocities determined by A(x*). Therefore, the velocities of all the particles could be modified.
The following lemma ensures that only the velocities of the particles involved in a collision with
particles of another type at time ¢*(x) are actually modified. It is first useful to define the set

(3.11) Tyik(x) = {T;OZ“M(X) (e, B:7) €eRx),v: ke{a:i,B8:5}}
of instants at which the particle v : k collides with particles of different types in the MSPD started
at x. For all T > 0, we also let

0 if the set 7,.4(x) N[0, T) is empty,
(3.12) T NTyk(x) = :
max(7:,(x) N [0,7")) otherwise.
Note that 0 < T~ AT u(x) < T.
Lemma 3.2.11 (Locality of the interactions in the MSPD). Let T,.x(x) be defined as above.
(i) For all v:k € P2, if t*(x) € To.k(x), then
N(x) = N ().
(i) For all T > 0, for all v € {1,...,d}, if K C {1,...,n} is such that, for all k € K,
cul(x;T) Cv: K

(with an obvious notation for v : K ), then the process {®](x;t) : k € K} follows the Local
Sticky Particle Dynamics, in the sense of Definition 3.1.8, on the interval [to, T| with

to = rkneaé( T AN Tyi(x),

with initial velocity vector \x = (A\p)rex defined by
Ve K, = A\(®(x;t0)).
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Proof. We first address (i) and let v : k € P2 such that t*(x) € T5.,(x). Then, due to the definition
of \](x*), it suffices to check that, for all 7" # ~,

w”::k(x*) = w”::k(x)'
We describe the case 7' < +, the reverse case is symmetric. The equality above holds if and only
if, for all &' € {1,...,n},
(v :K,y:k)eR(x) ifandonlyif (v :k,v:k)eR(x"),
that is to say
xZ: <) if and only if fI)Z: (x;t7(x)) < @) (x;t*(x)),

which obviously holds true since ¢t*(x) ¢ T+.x(x) implies that the particle v : k does not collide
with any particle 4" : k" on [0, £*(x)].

The point (ii) is now an easy consequence of the choice of ¢, which ensures that, for all k € K,
the particle v : k does not collide with a particle of another type in the time interval (¢o,7). O

4. Construction of probabilistic solutions by approximation

In this section, we detail the proof of Theorem 2.4.5, which in particular provides existence of
probabilistic solutions to (1.5) under Assumptions (C) and (USH). In Subsection 4.1, we first state
a closedness property on the set of probabilistic solutions to (1.5). In Subsection 4.2, we show
that, for all x € D2, the vector of empirical CDFs of the MSPD is an exact probabilistic solution
to the system (1.5), but with discrete initial data induced by x. Taking a sequence of initial
configurations (x(n)),>1 approximating the actual initial data (u}, ..., ug) of the system (1.5), we
finally combine the closedness property of Subsection 4.1 with a tightness argument to complete
the proof of Theorem 2.4.5 in Subsection 4.3.

4.1. Closedness of the set of probabilistic solutions. This subsection contains the statement
of Proposition 4.1.1, the proof of which is postponed to Section A.2 in Appendix A.

Proposition 4.1.1 (Closedness of the set of probabilistic solutions). Under Assumption (C), let
(up)n>1 be a sequence of functions

u, = (ul,...,ud):[0,+00) x R — [0, 1]¢
such that:
e for all n > 1, the function u, is a probabilistic solution to the system (1.5) with initial
data (u(l)yn, . ,ugyn),

o forallt >0, for all v € {1,...,d}, there exists a CDF u”(t,-) on the real line such that,
for all x € R for which Ayzu”(t,z) =0,

- g —u
nll}rfooun(t,:v) u(t, ),

e for ally,v' €{1,...,d} such that v # ~/,
(4.1) dt-almost everywhere, Ve eR, A (t,z)Au () = 0.

Then the function u = (ul,... ,ud) : [0,+00) x R — [0,1]? is a probabilistic solution to the
system (1.5) with initial data (ud, ..., ud) defined by uj(z) = u?(0,z).

4.2. Empirical CDFs of the MSPD. For all x € D%, recall the Definition 2.4.4 of the vector of
empirical CDFs u([x] of the MSPD started at x. Let us check that the trajectory (®)(x;t));>0 is
Lipschitz continuous, and satisfies the characteristic equation

(4.2) Vy: ke P4, D) (x;t) = N {ulx]}(t, ] (x;1)), dt-almost everywhere.

To this aim, let us fix ¢ > 0 outside of the finite set {T;?il}ﬁ:j(x), (a:4,8:7) € R(x)}. We claim
that, for all v: k € P2,

(4.3) A {ul]}t, @p(x;t) = v (x;1),
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where we recall the definition (3.9) of v/ (x;t). Clearly, (4.3) implies the characteristic equa-
tion (4.2). To obtain (4.3), fix v : k € PZ and write z == ®](x,t), v : k---k = clul(x;t).
Then

u"*[x](t,a:_):%, uV[x](t,x):% and Amzﬂ[x](t,:zr)z$>0.
As a consequence,
N {ulx]}(t, 2) - /E/n A (ul[x](t, ) (¢, 7)) d
X , L) = =———— u |xX|(t,x),...,w,...,u |X|(t,T w.
E—E+1Ju=(k-1)/n

The choice of ¢ implies that, for all 4/ € {1,...,d} such that v # v/,
A [x](t,2) =0,

therefore, for all &’ € {k, ..., k},

As a conclusion,

hence (4.3).
We deduce the following proposition.

Proposition 4.2.1 (The MSPD provides an exact solution to (1.5)). Under Assumptions (C)
and (USH), for all x € D2, the vector of empirical CDFs u[x] defined by (2.5) is a probabilistic
solution to the system (1.5), with initial data (ud[x], ..., ud[x]) defined by (2.6).

Proof. Let us fix x € DY, By construction, for all ¢ > 0, for all v € {1,...,d}, u”[x](,-) is a CDF
on the real line. In order to prove that it is a probabilistic solution to the system (1.5), we first
check that, for all v € {1,...,d}, the function v”[x] is measurable on [0, +00) x R. Then, we check
that u[x] satisfies (ii) in Definition 2.4.1.

Proof of measurability. Recall that u?[x](¢,-) writes H * p/[x]. In this definition, replace the
Heaviside H with its continuous approximation H; defined by, for all [ > 1,

0 if v < —1/1,
H(zx)=q¢ 1+4+lz if-1/l<x <0,
1 if x >0,

so as to define ] [x|(¢,-) := H; % u}[x]. Then, on the one hand, for all ¢ > 0, the function
x + u] [x](t,x) is continuous and nondecreasing on R, hence Dini’s Theorem implies that ;) [x]
is continuous, and therefore measurable, on [0, +00) x R. On the other hand, H;(z) converges to
H(z) for all z € R, therefore u”[x] is the pointwise limit of «;' [x], which completes the proof.

Proof of (ii) in Definition 2.4.1. Let us fix ¢ = (¢, ..., ¢%) € CL1O(]0, +00) x R,R?) and, for all
v €{l,...,d}, define )7 by

—+oo
W(ta) € oo xR, 0(0)i= [ (6o,
y=x
Owing to (4.3), the chain rule formula for functions of finite variation [46, Proposition (4.6), p. 6]
yields, for all T > 0, for all v : k € P4,

T
PUT, (6 T)) = 47(0,2) + /t_o (07 (8, @ () + 027 (¢, @ (6 1)) AT {ulx } (£, @ (x: 1)) dt
T
=7(0, ) +/ (07 (t, D (x: 1)) — @7 (8, Py (x: £)) A {ulx] }(E, @ (x;2))) dt.

t=0
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Since ¢7 has a compact support, the left-hand side above vanishes when 7' grows to infinity, and
taking the average of both sides for k € {1,...,n} yields

0 :/ Y7 (0,xz)dug / / (O (t, ) — @V (t, )NV {u[x] }¢, z)) dpu[x](t, x)dt.
z€R t=
By the Fubini Theorem,
[ woaumKe = [ e 0pigked = [ 06K,
z€R (z,y)ER? yER
and we similarly obtain, for all ¢ > 0,
| ookt = [ oty ke
z€R yeR

As a consequence,

[ et [ o0.mamy
/t / Y (t, )N {ux]} (¢, z)dsu” [x](t, z)dt,

and we complete the proof by taking the sum of both sides for v € {1,...,d}. O

Remark 4.2.2. Proposition 4.2.1 provides easy examples for which the uniqueness of probabilistic
solutions to (1.5) fails. Indeed, fix x € D¢ and define x € D4, by, for all v € {1,...,d}, for all
ke{l,...,n},

Fppoy = Loy, 1= Ty
Then, for all v € {1,...,d}, the empirical distributions

i and X :%Z

k=1 k=1

3|*—‘

coincide in P(R). As a consequence, by Proposition 4.2.1, the vectors of empirical CDFs u[x] and
u[X] are probabilistic solutions to the system (1.5) with the same initial data.

But let us assume that there exists v € {1,...,d} such that u — X\ (ul,... "1 u,u L .. u?)
be increasing, for all (u!,..., w1, u "t ... u?) € [0,1]9"!. Then, in the MSPD started at X,
the particles of type 7 instantaneously drift away from each other. As a consequence, for all

€ (0,t*(x)), the marginal distribution ;) [X] has exactly 2n atoms, while the marginal distribu-
tion pf[x] possesses at most n atoms. Therefore, the corresponding solutions to the system (1.5)
do not coincide.

4.3. Proof of Theorem 2.4.5. The proof of Theorem 2.4.5 is based on a tightness argument for
the empirical distribution of the MSPD. We recall that a sequence of probability measures (fin)n>1
on some metric space F is said to be tight if, for all € > 0, there exists a compact subset K of E
such that p,(K) > 1 —ecfor alln > 1 [8, p. 8]. If (tn)n>1 is tight, then Prohorov’s Theorem |3,
Theorem 5.1, p. 59] asserts that from each subsequence of (,)n>1, one can extract a further
subsequence weakly converging to some u € P(FE). Conversely, if E is complete and separable,
then any sequence of probability measures (un)n>1 on E of which every subsequence contains a
weakly converging further subsequence is tight [8, Theorem 5.2, p. 60]. We finally recall that the
set C([0, +00),RY), endowed with the topology of the uniform convergence on the compact sets of
[0, +00), is complete and separable; this follows from a slight adaptation of [8, Example 1.3, p. 11].

Proposition 4.3.1 (Convergence of the MSPD). Under the assumptions of Theorem 2.4.5, the
sequence (W[x(n)])n>1 is tight. Besides, if i € M refers to the limit of a converging subsequence,

then for all v,~" € {1,...,d} such that v # +', the marginal probability measures [} and HZ, have
distinct atoms dt-almost everywhere.
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Proof. Let us fix T > 0 and denote
1 n
H[O,T = E Z 5 (7 (x(n);t))eeqo, 1) € P(C([Ov T]a Rd))
k=1

the empirical distribution of the restriction of the MSPD started at x(n) to [0,T]. We first prove
that the sequence (o 71[x(n)])n>1 is tight on C([0, 7], R?), using [3, Theorem 7.3, p. 82|, which
is a consequence of the Arzela-Ascoli Theorem. To apply this theorem, we need (i) to prove that
the sequence of marginal distributions po[x(n)] € P(R?) is tight, and (ii) to exhibit a uniform (in
n) control on the modulus of continuity of the sample-paths of the MSPD started at x(n).

The point (i) is obtained as follows: by the assumptions on the sequence (x(n))n>1, the marginal
distributions pj[x(n)], ... pd[x(n)] € P(R) of po[x(n)] € P(RY) are weakly converging. Since R is
complete and separable, we deduce that these marginal distributions are tight, which, by an easy
adaptation of [3, Exercise 5.9, p. 65|, implies that the sequence (po[x(n)])n>1 itself is tight.

The point (ii) follows from the fact that, by (3.10), for all n > 1, for all k € {1,...,n}, the
process

(@R Ce()i 1), -, BE(X(n); 1)) e

satisfies the Lipschitz continuity condition

d
Z = @i (x(n);s)| < |t = s|Loa,

with a constant Lc ; that does not depend on n.

Let us fix a subsequence of (u[x(n)])n>1, that we still index by n for convenience. Then, by
the argument above, the sequence (o 71[x(n)])n>1 is tight, and therefore, owing to the Prohorov
Theorem, we can extract a further subsequence converging weakly to some probability measure
Hio,7) on C([0,T],R9). Letting T grow to infinity along some countable set and using a diagonal
extraction procedure, we deduce that there exists an increasing sequence of integers (ng);>1 and
T € M such that p[x(ng)] converges weakly to T € M.

Let us now check that, for all v,+" € {1,...,d} such that v # ~', dt-almost everywhere, the
probability measures [y and T} have distinct atoms. We note that this amounts to proving that

+oo ,
/ mow ({(za)eR?: z=2a'})dt =0,
t=0

where T} ®Hzl denotes the product measure of {I; and Hzl on R2. Following |3, (ii), Theorem 2.8,
p. 23|, for all ¢ > 0, the probability measure ] [x(n¢)] @ p [x(n¢)] converges weakly to I ® [t}
on R2. Hence, for all € > 0, the Portmanteau Theorem |3, (iv), Theorem 2.1, p. 16| yields

W e () € R : o] < o))

< liminf ] [x(ne)] © 17 [e(no)]({(z,2') € B : |2 2’| < ),

therefore by the Fatou lemma,

+oo ,
| m e e e B o - o) <
t=0

o0 ,
< lim inf / o) @ ] x())({( ) € B o — o] < e
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Now, for all ¢ > 1, by the Fubini Theorem,

+oo
/t W [x(n0)] @ w7 [x(ne))({(2,0') € R?: |z — /| < e})dt

=0

/< / A1 (v <cy ] Bx(n)) ()] (o)) (d)

o0

1 n
2 Z‘: ;;1 / ﬂ{\@‘,ﬁ(x(n);t)—@gi (x(myn) <y I

t=0

By Lemma 3.2.10, for all v : k,y' : k' € P4 with v # «/,

™ at < 25
o e —e ximnl<er S Too

As a consequence,

+o0o , +o0 ,
/ W ow ({(ea) € R 1o =o'}t < / W o ({(ea) e B2 : o —o| < })dt
t=0 t=0
2¢
< ;
Lusu
and we complete the proof by letting e vanish. ([

The proof of Theorem 2.4.5 finally comes as a straightforward consequence of Proposition 4.3.1.

Proof of Theorem 2.4.5. Under the assumptions of Theorem 2.4.5, let us fix a subsequence of
(1[x(n)])n>1, and let (p[x(ne)])e>1 denote a further subsequence weakly converging to some ft € M

as is given by Proposition 4.3.1. Define the function u = (u!,...,u?) : [0, +00) x R — [0,1]? by

Vi>0, Vyedl,...,d}, u(t,z) := H * 1 ().

We first note that, by Proposition 4.2.1, for all £ > 1, the function u[x(n¢)] is a probabilistic
solution to the system (1.5). Furthermore, by Lemma 2.3.6, we have, for all v € {1,...,d}, for all
t>0,

ZETOO u¥[x(ne)|(t, x) = u (¢, )

for all x € R such that A,u”(¢t,z) = 0. Finally, by the second part of Proposition 4.3.1, the
function u satifies (4.1) in Proposition 4.1.1.

As a consequence, we can apply Proposition 4.1.1 and conclude that u is a probabilistic solution
to the system (1.5), with initial data (ug, ..., ud) defined by uj = H * ij = H * m”. The proof of
Theorem 2.4.5 is completed. O

5. Trajectories associated with probabilistic solutions

In Section 4, we checked that the MSPD satisfies the differential relation (4.2). In other words,
the MSPD behaves like what one would expect to be the characteristics associated with the system
of transport equations

u” + XN{u}o,u” =0
uY(0,2) = ug(x).

Yy e{l,...,d}, {

However, the value of u[x](¢, ®](x;)) is only constant between collisions of particles.

More generally, one may wonder whether such a description in terms of trajectories of a process
(X(t))i>0 in R%, may be generalized to any probabilistic solution u to (1.5) and whether these
trajectories satisfy a differential relation similar to (4.2). In the MSPD, the positions of the
particles are given by the quantiles of order k/n of the empirical CDF, therefore it is natural to
define, for all v € (0, 1), the process (X, (¢))¢>0 by

(5.1) vt >0, X, (t) = (X1(t),...,X%1)) e RY, X7(t) == u(t, )" Hv).

v

In Subsection 5.1, we show that, for all v € {1,...,d}, dv-almost everywhere, the trajectory of
(X (t))e>0 is Lipschitz continuous, with Lipschitz constants given by the lower and upper bounds of
AY. This allows us to provide a probabilistic representation of the solution u in terms of a stochastic
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process (X!(2),...,X%(#))s>0. Then in Subsection 5.2, we show that the process (X (t));>¢ satisfies
a differential relation similar to (4.2) if and only u is a renormalised solution to (1.5) in the y-th
coordinate in the sense of DiPerna and Lions [29].

5.1. Probabilistic representation of probabilistic solutions. Throughout the subsection, we
shall work under Assumption (C) and denote, for all v € {1,...,d},

A= inf A(u), N = sup \(u).
uelo,1]¢ uelo,1]4

Proposition 5.1.1 (Lipschitz continuity of trajectories). Under Assumption (C), let u be a prob-
abilistic solution to (1.5) such that t — u(t,-) is continuous in Li _(R)?, and let (X(t))i>0 be
defined by (5.1). Then, for all v € {1,...,d}, dv-almost everywhere, the trajectory of (X (t))t>o0
is Lipschitz continuous and

(5.2) A< X)) <X, dt-almost everywhere.
Proof. Let us fix v € {1,...,d}. The proof of (5.2) is detailed in the two steps below.

Step 1: using intermediate functions u” and u”. From the definition of u”, we note that d,u” is a
nonnegative measure, and then u? satisfies

O + N 0pu” <0< 0 + XN Opu?
in the distributional sense on (0, +00) x R. This means that
w(t,x) :=u(t,z + A7t) and  W(t,x) :=u)(t,x+ N 't)
satisfy
(5.3) B’ <0 < 9"

in the distributional sense on (0, +00) x R. We claim that this implies the existence of a Borel
subset 7 of (0, +00) with zero Lebesgue measure such that, for all z € R, for all ¢1,t3 € (0, +00)\T
with tl S tg,

(5.4) w(te,z) —u(t1,2) <0< (t2, ) — 0 (t1,x).

The proof of this claim is postponed to Step 2 below.
We deduce that for all y € R,

W (t2,y + A7 (b2 — 1)) < w7 (b1, y) < w7 (b, y + X (2 — 1)),

Fixing v € (0, 1), then choosing y = X (¢1) in the right-hand inequality and y = X)) (t2)—A" (t2—11)
in the left-hand inequality, we deduce from Assertions (ii) and (iii) in Lemma 2.3.4 that

X7(t) + X7 (k2 — 1) < X[ (t2) < X7(1) + X (b2 — 1),

which holds for all ¢; < t5 in (0, +00) \ 7.
For allv € (0,1), we deduce the existence of ¢ — X7 (t) which coincides with X)) (¢) on (0, +00)\T
and such that

(5.5) V0 <ty < to, XY () + A (2 —t1) < X (ta) < X (t1) + X (ta — t1).

The continuity of ¢ — X;Y(tl for all v € (0,1) combined with Lemma 2.3.6 ensure that the CDF
of the image of U by v — X (t), which coincides with w7 (¢,-) on (0,+00) \ 7, is continuous in

Lj,.(R) as a function of ¢ € [0,400). Since ¢ — u7(t,-) is also continuous in Ly, (R), we deduce
that
1
(5.6) V(t,z) € [0,400) xR,  u'(t,x) :/ Lixo(1y<aydo-
v=0

From Assertion (i) in Lemma 2.3.4 and Lemma 2.3.6, t — X(¢) is continuous on [0, +00) as soon
as v is not in

Vi={ve(0,1):3t; >0, Ixr <y eR, u(t;,z) =u"(t1,y) = v}.
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Let v € V and t; > 0, z,y € R be such that x < y and u”(¢1,2) = u”(¢t1,y) = v. The
monotonicity of w — X7 (¢;) and (5.6) ensure that

Yw e (0,v), X)(t1) <z and Yw e (v,1), X(t1) > y.

Now, by (5.5), for to > t1, X(t2) < 2+ X (ty —t1) when w € (0,v) and X (ta) >y + A (t2 — t1)
when w € (v,1). Forty € (t1,t14 (y—2)/(X' =A")), 24X (ta—t1) < y+ A" (t2—t1) and, by (5.6),
Wty N (b2 = 1)) = 0 (b2, + A7 (2 — 1)) = v

Hence
V={ve(0,1): I €Qy, Iz <yeR, u(ts,z) =u(t2,y) = v},

and V is countable as a countable union of countable sets. Since ¢t — X (t) and ¢ — X (t) coincide
for v € V, and for all ¢ > 0, v — X7(¢) is nondecreasing, the conclusion follows from (5.5).

Step 2: proof of (5.4). The proof of (5.4) should be standard, but we do not know any reference,
S0 we propose a proof below.

Let R > 0. Let us consider a C* function ¢ : R — [0, 400) with supp ¢ C [—R, R] and
let x. > 0 be a nonnegative smooth approximation of the indicator function x(t) = Lgief, ]}
with compact support in (0,400), where 0 < ¢; < to are Lebesgue points of the function u” €
L>((0,+00), LY([-R, R]). Let us define the function

(I)e(t,ft) = 1/)(17))(5(15) > 0.

Taking the distributional bracket of inequality (5.3) with the test function ®., and integrating by
parts in the sense of distributions, we get

_ /:Z /meRg’Y(t,x)l/f(x)atxe(t)dxdt <0< — /:(; /EGRE'Y(t7‘r)w(‘r)atXE(t)dxdt-

Passing to the limit as ¢ goes to zero, we obtain

/QEERQ’Y(tQ,:E)UJ(I)dx - /meRg’y(tl’xM}(x)dx <0< /

z€R

Y (to, x)(x)da — / ) (t1,x)(x)da.

zeR
Since R and 1 are arbitrary, this implies

(5.7) w (ta,x) —u(t1,2) <0 <u(te,x) —u(t1,x) dz-almost everywhere.

Because of the right continuity of w7 (¢, -), we conclude that (5.7) holds true for every z € R, which
shows (5.4). O

An immediate consequence of Proposition 5.1.1 is that probabilistic solutions to (1.5) have a
finite speed of propagation.

Corollary 5.1.2 (Finite speed of propagation). Under Assumption (C), let u be a probabilistic
solution to (1.5) satisfying the assumptions of Proposition 5.1.1. For all v € {1,...,d}, for all
7,t>0:

(i) for alla € R, w¥(7,a) < u (T +t,a+ X't),

(it) for allb e R, u¥(r,07) > u¥(7 + ¢, (b+ A"t)7).
Proof. Let v = w?(7,a). By (iii) in Lemma 2.3.4, X)(7) = u?(7,-)"}(v) < a, so that Proposi-
tion 5.1.1 yields

W(r4t) ) = X)(r4+t) < X))+ At <a+ X't
therefore by (iii) in Lemma 2.3.4 again, u”(7,a) = v < u¥(7 +t,a + X t), whence (i).
Let us now fix € > 0 and v > w”(7r,b — €). By (iii) in Lemma 2.3.4, X7(7) > b — ¢, and by
Proposition 5.1.1,
W(T+t,) ) =XJ(T+1) > XJ(1) + At > b+ At — e,

so that, by (iii) in Lemma 2.3.4 again, v > u”(7 4+ ¢,b + A"t — €). Since v is arbitrarily close to
u(71,b—€), we deduce that w¥(7,b—¢€) > u?(7 +t,b+ A"t — €), and obtain (ii) by taking the limit
of this inequality when e vanishes. O
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The proof of Theorem 2.4.5, and in particular Proposition 4.3.1, shows that, for the probabilistic
solutions u obtained there, there exists a probability measure t € M such that

(5.8) Vye{l,...,d}, V(t,z)€[0,400) xR, u(t,z) = H 1 (z).

It is therefore natural to wonder if, for any probabilistic solution u, there exists © € M such
that (5.8) holds. In other words, does there exist a stochastic process (X'(¢),...,X%(t));>0 with
continuous sample-paths in R¢, such that for all v € {1,...,d}, for all ¢ > 0, the function u(¢,) is
the CDF of the random variable X7(¢)? Proposition 5.1.1 provides a constructive positive answer
to this question.

Corollary 5.1.3 (Probabilistic representation of probabilistic solutions). Under Assumption (C),
let u be a probabilistic solution to (1.5) satisfying the assumptions of Proposition 5.1.1. Let v be a
uniform random variable on (0,1), and let us define the stochastic process (X1(t),...,X%(t))i>0 by

VE>0, Vye{l,...,d, X(t):=X).

Then the sample-paths of (X'(t),...,X%(t))i>0 are almost surely continuous, and the law pu € M
of this process satisfies (5.8).

The fact that the sample-paths of (X!(#),...,X%(#))¢>0 are almost surely continuous is a straight-
forward consequence of (5.2), and it follows from the change of variable formula in Lemma 2.3.5
that the image p € M of the Lebesgue measure U on (0,1) by v+ (X} (#),..., X2(t))t>0 satisfies
(5.8).

Remark 5.1.4. The condition in Proposition 5.1.1 that ¢ ~ u(t,-) be continuous in L (R)
is automatically satisfied if there exists T € M such that (5.8) holds. Indeed, in this case the
Dominated Convergence Theorem implies that the mapping ¢t — T} is weakly continuous in P(R),
and by Lemma 2.3.6, for all ¢; > 0, u”(t,x) converges to u”(to,x), dz-almost everywhere. Since

these functions are uniformly bounded, then the convergence holds in Li (R)%.

d

Remark 5.1.5. Let u be a probabilistic solution to (1.5) obtained in Theorem 2.4.5 as the limit
of the empirical CDFs of the MSPD along some subsequence (u[x(n¢)])s>1. We a priori have two
probabilistic representations for u: by the probability measure @ defined in Proposition 4.3.1 as
the weak limit of u[x(ng)] in M, and by the probability measure p provided by Corollary 5.1.3. Let
us check that these two probability measures actually coincide. For any continuous and bounded
function f : (Rd)k — Rand any 0 <ty <ty <--- < g, we have, for all n > 1,

1
[ il = [ ft e, o)), ) )
(R)* v=0

ul[x(n)](tkv ')_1(U)7 oo 7ud[x(n)](tk7 ')_1(U))dU7
where py, 4, [x(n)] denotes the finite-dimensional marginal distribution of the measure p[x(n)]

at times t1,...,t;. By an easy adaptation of [39, Lemma 3.5], this equality is preserved by weak
convergence in M, so that

1
[ = [ ) 0 ) )
(R)* v=0

ul(tkv ')_1(1)), o aud(tka ')_l(v))dvv
Therefore 1t has the same finite-dimensional marginals as p. Since a probability measure in M is
determined by its finite-dimensional marginals, 1t = p.

5.2. Renormalised solutions and identification of the velocity. Given a probabilistic solu-
tion u to the system (1.5) satisfying the assumptions of Proposition 5.1.1, we now want to provide
a dynamical description, similar to (4.2), of the evolution of the trajectory (X,(t))i>o defined
in (5.1). To this aim, we first need to introduce the notion of a renormalised solution to (1.5) in
the v-th coordinate, which is adapted from DiPerna and Lions [29].
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Definition 5.2.1 (Renormalised solution to (1.5)). Under Assumption (C), a probabilistic solution
u to the system (1.5) is said to be a renormalised solution to (1.5) in the y-th coordinate if, for
all C* increasing functions B : [0,1] — R such that B(0) = 0 and B(1) = 1, for all test functions
¢ € CLY([0,4) x R,R),

+oo
/: Opp(t, ) B(u (¢, x))dadt + / (0, z)B(ug (z))dz

x€R sER
/t / (L, )X {u} (1, @), (B o w)) (1, 2)dt,

where d, (B o uY)(t,x) refers to the probability measure with CDF B(u”(t,-)).

Recall that, if u is a probabilistic solution to (1.5) satisfying the assumptions of Proposition 5.1.1,
then with the notations of Subsection 5.1, dv-almost everywhere in (O 1), the process (X, (t))i>0
is Lipschitz continuous and, for all v € {1,...,d}, A7 < XJ(t) < X', dt-almost everywhere. For
trajectories associated with renormalised solutions to (1.5), this description is strengthened as
follows.

Proposition 5.2.2 (Trajectories associated with renormalised solutions). Under Assumption (C),
let u = (ul,...,u?) be a probabilistic solution to (1.5) satisfying the assumptions of Proposi-
tion 5.1.1. Then, for ally € {1,...,d}, u is a renormalised solution to (1.5) in the y-th coordinate
if and only if, dv-almost everywhere in (0,1), the process (X (t))i>0 defined in (5.1) is Lipschitz
continuous and

(5.9) X7(t) = N {u}(t, X (1)) dt-almost everywhere.

Proof of necessity. Let us first fix v € {1,...,d} and assume that u is a renormalised solution
in the v-th coordinate. Let us also fix vy € (0,1). Let us prove that, for all functions ¢ €
CLL([0,+00) x R,R), for all t > 0,

—+oo

D0.X0,0) + [ (00t X7, (0) + X X3, (0)0.0(8 X7, (1) de =0,

t=0
so that, for all 0 < ¢; < ¢9, taking smooth and compactly supported approximations 1 (t,z) of
Iﬂ{tlgtgtg} ylelds

ta
X0 (1) = X3y 0) = [ a6 X, ()
t=ty
For such a function v, let ¢ := —d,1. For all € > 0, let B : [0,1] — [0,1] be an increasing C*
function, such that 5.(0) =0, 8.(1) = 1 and, for all v € (0,1),
(5.10) 1%1 Be(v) = L0}

Since u is a renormalised solution, we have, for all € > 0,

+oo
/ Orp(t, ) Be(u? (t, z))dxdt —|—/ ©(0,2)Be (ug (z))dz
t=0 zeR T

eR
/t / p(t, 2)AT{u}(t, 2)de (Be 0 u?)(t, x)dt.

On account of (5.10) the Dominated Convergence Theorem gives

—+o0
lifg / Oro(t, ) Be (W (¢, x))dxdt = / Oro(t, )Ly (1,2)) >,y dzdt

= z€R
/ Btgo (t,x)dadt
t=

_ /t:o Oub(t, X7, ()t
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likewise,

lim ©(0,2)Be(ug (z))dz = (0, X7 (0)).

&0 Jrer
However, passing to the limit in the right-hand side is more delicate as, for all ¢ > 0, the proba-
bility measure with CDF . (u?(t,-)) converges weakly to the Dirac distribution in X (), and the
function A7{u}(¢,-) may be discontinuous at this point.

To handle this issue, we first fix ¢ > 0 and remark that the function \"{u}(t,-) is continuous

outside of the countable set

X:={zeR:I e{l,....d}, A" (t,z) > 0}.

This fact is obtained by writing
1
N {ud(t, ) :/ N (Wt ), ., (1= Oy (2 ) + 07 (2,2, ... ul(t, ) dO
0=0
and noting that, for all 8 € [0, 1], the integrand is continuous on R\ X.
We can now assert that vg is in exactly one of the three following cases:

(1) X3,(t) & &,

(2) X) () € X and Au”(t, X] (£) >0,

(3) X7 (t) € X and Agu?(t, X7 (t)) = 0.
In case (1), we deduce from the discussion above that \{u}(t,-) is continuous at X7 (¢), and
therefore by [8, Exercise 2.10 (a)], we have

i [0, 2N () (1) 007) 1 2) = (0, X2, (N ()4, X2, 1)
€ z€R

In case (2), we also have Ay (B ou?)(t, X7 (t)) > 0 and
[ et m ) a)a (6w t,2)
= / gﬁ(t,x)/\v{u}(t,x)dm(ﬂe ou”)(t,x)
#X3, (1)

+(t, X, ()N {ub (8, X7, (1)) (Be(u™ (£, X7, (1)) — Be(u (8, X7, (£)7))) -

By (5.10), if (¢, X (t)7) < wo, then Be(uY(t, X7 (t))) — Be(u” (t, X (t)7)) converges to 1 when
€ goes to 0, while the integral over R\ {X] ()} vanishes due to the boundedness of ¢ and A\7{u}.
On the other hand, the set Vi (t) of values of v such that u”(¢, X (£)7) = vo, is countable. We
finally prove that the set Va(t) of values of vy corresponding to case (3) is also countable. Indeed,
in the latter case, X (t) belongs to the countable set X. Assuming that there exists vy # vo such
that X;Y() (t) = X7 (t) implies that Ayu”(t, X (t)) > 0 and therefore is a contradiction with the
fact that v is in case (3). As a consequence, one can associate each x € X with at most one vy in
case (3) such that = = X (t), and therefore the set V»(t) is countable.

As a conclusion, for all ¢ > 0, we have constructed a countable set V(t) := V1 (¢) U Va(¢) such
that, for vy € (0,1) \ V(¢),

lim . p(t, )N {u} (¢, 2)de (Be 0 u?) (¢, x) = @(t, X3, () A7 {u} (¢, X7, ().

By the Fubini Theorem, there exists a negligible set V C (0,1) such that, for all vg & V, we have
vo & V(t), dt-almost everywhere. As a consequence, for vg € (0,1)\ V, the Dominated Convergence
Theorem yields

—+o0

. Jroo
tim [ e ) oo )t = [ ole X2, 00 ()t X3, (),

which completes the proof.

Proof of sufficiency. We assume that, for all v € (0,1), the process (X (t)):>0 is Lipschitz con-
tinuous and satisfies (5.9). Let 3 : [0,1] — R be a C! increasing function such that 3(0) = 0 and
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B(1) =1, and let ¢ € CLO([0,+00) x R,R). Let us define

+o0
Y(t,x) = / o(t,y)dy.

For all v € (0,1), for all T > 0,
T

VTXT) = b0 X00) + [ (@t XI0) + 0,00, X2 ()N {u) 1, X2 0) .
t=0

Taking T large enough to cancel the left-hand side, multiplying by 8’(v), integrating over (0, 1)
and performing the change of variable w = §(v), we obtain

0= /wl_ b (O,th(w)(O)) dw

+/1 /t (000 (X7 1y () + a0 (8 X 1) () N {u} (8, X1 (1))) s

w

/ (0, ) (8 0 ) (0, 2) /t / (Orb(t, @) + Dbt )N {u} (1)) do (B 0 ) (1, 2)dt,

thanks to Lemma 2.3.5.
By the Fubini Theorem,

/ $(0,2)d, (B 0 u?)(0,2) = / o (t,1)Bud (1) dy
rcR yeR

and similarly,

+oo too
/t:() /zG]R Op(t, )dx (B ou™)(¢t, z)dt = /t /ng Arp(t, y)B(u” (t,y))dydt.

=0
On the other hand, it is straightforward that

/t / D0 (t, )N {u} (t, z)d, (8 o uY)(t, x)dt
= [ ettt s o e

which concludes the proof. ([

Combining (4.2) with Proposition 5.2.2, we see that, for all x € DY, the vector of empirical
CDFs ulx] of the MSPD started at x is a renormalised solution to (1.5) in all its coordinates. Note
that it is also easy to give a direct proof of this fact, by replacing the weight 1/n of the particle
v : k with g(k/n) — B((k — 1)/n) in the proof of Proposition 4.2.1 — which actually amounts to
mimicking the proof of sufficiency above.

As a consequence, if the set of renormalised solutions enjoyed a closedness property of the same
nature as Proposition 4.1.1, then one would expect the approximation procedure described in Sec-
tion 4 to imply that the probabilistic solutions constructed in Theorem 2.4.5 are also renormalised
solutions in all their coordinates, and therefore that the corresponding trajectories (X, (t))e>0 sat-
isfy the characteristic equation (5.9). However, it seems to us that the set of renormalised solutions
does not enjoy such a closedness property, and therefore we do not know, in general, whether prob-
abilistic solutions obtained by Theorem 2.4.5 are renormalised solutions. The following lemma
describes a situation in which this is actually the case.

Lemma 5.2.3 (Renormalised solutions obtained from Theorem 2.4.5). Under Assumptions (C)
and (USH), let u be a probabilistic solution to (1.5) obtained by Theorem 2.4.5. For all v €
{1,...,d}, if dt-almost everywhere, the function u(t,-) is continuous on the real line, then u is a
renormalised solution in the y-th coordinate.

Monotonicity conditions on the function A7 ensuring that, d¢-almost everywhere, the function
u(t,-) is continuous on the real line, will be discussed in Section 6.
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Proof. Let u = (u',...,u?) be a probabilistic solution to (1.5) obtained by Theorem 2.4.5, so
that there exists a sequence (x(n¢))¢>1 of initial configurations such that the sequence of empirical
measures p[x(ng)] converges weakly, when £ grows to infinity, to some probability measure T € M
such that u?(t,z) = H = ] (x). In the sequel of the proof we drop the index ¢ and assume for
convenience that p[x(n)] converges weakly to T when n grows to infinity. Recall that we denote
by u[x(n)] the vector of empirical CDFs of the MSPD started at x(n). We furthermore assume
that v € {1,...,d} is such that, d¢-almost everywhere, the function u”(¢,-) is continuous on the
real line.

Given a C! increasing function 3 : [0,1] — R such that 3(0) = 0 and $(1) = 1 and a test
function ¢ € CLY(]0, +00) x R, R), the discussion above yields

+oo
/t 3t<p(t,I)ﬂ(u”[X(n)](M))dIdt+/ (0, 2)B(u” [x(n))(0, z))dz

=0 xz€eR 2€R
—+o0
N /t_o / _, PEN{ulx(m)]} (6 2)ds(8 o wpe(m]) (¢, z)dt

and to prove Lemma 5.2.3, we have to take the limit of this equality when n grows to infinity.
First, since by Corollary 2.4.6, u”[x(n)](t,z) converges dz-almost everywhere to u? (¢, ), for all
t > 0, the Dominated Convergence Theorem yields

+o0
lim Aot ) B(uY [x(n)](t, z))dzdt +/ (0, 2)B(u"[x(n)](0, z))dx

n—=+ Ji—o Jzer zER

+oo
— [ [ awtope ot + [ o025 (0,0)de
t=0 x€R

zeR

The function 3 being continuous and increasing, it admits a continuous and increasing inverse S~!
and for any CDF F on the real line, the CDF B(F) is such that, for all v € (0,1), (8(F))'(v) =
F~1(871(v)). Therefore, by Lemma 2.3.5, for any bounded and measurable function f on the real
line,

/z _@B(P)s = /w T w)du / T )R )

Therefore, to conclude the proof, it is enough to check that for any ¢ > 0 such that u”(¢,-) is
continuous,

1

lim o (8 u”[x(n)](t, )7 (v) A {ulx(m)]} (£ u [x(n)](t, ) (v) B (v)dv

n—-+oo =0

1
— [ o) ) M (7)) ().
v=0
Owing to Lemma 2.3.6, ¢(t,u”[x(n)](t, )1 (v)) converges to ¢(t,u?(t,-)"1(v)), dv-almost every-
where. Therefore, by the Dominated Convergence Theorem, it now suffices to show that, dv-almost
everywhere, \Y{u[x(n)]}(t, v [x(n)](t,-)"1(v)) converges to \Y{u}(t,u(t,)"1(v)). Since u?(t,")
is continuous, then Lemma A.2.2 already yields, for all 4" # ~,
lirﬁ u [x(n)] (t,w[x(n)](t, )" (v)) = u’ (t,u(t, )" (v), dv-almost everywhere.
n ——+oo
Besides, applying Lemma A.2.2 with F' and G both equal to the continuous function u(t,-), one
obtains that, dv-almost everywhere,
lim w[x(n)] (£, u?[x(n)](t,") " (v)7) =u? (t,u(t, )" (v)),

n—-+oo

lim w[x(n)] (£, u?[x(n)](t,") " (v) = (t,u"(t, )" (v)).

n—-+oo

As a consequence, we can now use the Dominated Convergence Theorem to pass to the limit in
the definition (2.3) of A\ {u[x(n)]}(¢,u”[x(n)](t,-)"*(v)), and thereby complete the proof. O
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6. Continuity of rarefaction coordinates

In this section, we discuss the continuity of probabilistic solutions to the system (1.5) obtained
by Theorem 2.4.5, under the following diagonal monotonicity conditions on the function \7: we
shall say that a coordinate v € {1,...,d} is

e a rarefaction coordinate if, for all (u',... w1 w1 ... ud) € [0,1]9 1, for all u, @ € [0, 1]
with u <7,
N (ul, et ed) > N (w0 T e e ud),
e a strong rarefaction coordinate if there exists a positive constant ¢ > 0 such that, for all
(ul,. . w L wr o ud) € [0,1]97 for all w, @ € [0,1] with u < 7,
(6.1) )ﬂ(ul, oY ) = XNt T wu T L ud) > (T — w).
Notice that this condition implies that for all (u',..., w1 uYT! ... ud) € [0,1]971, for
al0<u<u<v<v<l,
(6.2)
I "
— / N (b, w0t ud)dw — = / N (ub, . w2 ud)de
v—=u =v U—U J=y

c
> — =—(v —u—u).
Z oo u—u/ / z)dzdw 2(1}—!—2 U—u)

In Subsection 6.1, we address rarefactlon coordinates and obtain a control on the modulus of
continuity of our solutions in terms of the initial data, which follows from a uniform estimate on
the MSPD. In particular, we show that, if 7 is a rarefaction coordinate and ] is continuous, then
u” is continuous on [0,400) x R. In Subsection 6.2, we prove that, if v € {1,...,d} is a strong
rarefaction coordinate, then u” is continuous on (0, +oo) x R even when u fails to be continuous.

6.1. Continuity of rarefaction coordinates. For rarefaction coordinates, we first obtain the
following uniform estimate on the MSPD.

Proposition 6.1.1 (Discrete estimate for rarefaction coordinates). Under Assumptions (LC)
and (USH), let v € {1,...,d} be a rarefaction coordinate. Then, for all n > 2, for all x € D2, for
alke{l,...,n—1},

1
inf (2741 (x:1) — 2R(x;1)) 2 ;(x}lﬂ — ),
where
B Lic
(6.3) p=exp|(d—1) > 1.
Lysn

Proof. Let us fix a rarefaction coordinate v € {1,...,d}, and n > 2, x € D?, and finally k €
{1,...,n —1}. For all ' : ¥’ € P4 such that v/ # ~, we denote by [T~ (' : k’),T*(”y’ : k7)) the
time interval on which the particle 4" : k' lies between the particles v : k& and v : (k 4+ 1). More
precisely, if 7' < ~, then

T (s k) = Tcﬁ’l,i, 'yk( x) if (v :K,v:k) € R(x),
' ' 0 otherwise,

and

otherwise;

while for v/ >+,

reoll () (v: (k4 1),9 5 ) € R(x),

{TC9IIL/ e (/H—l) ) if (FY/ : k/vﬁy : (k + 1)) S R(X)v
{ otherwise,

and
reoll (x) if (y:k,y k) e R(x),

TH( (k) = vk
g ) { 0 otherwise;
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so that we finally have, for all ¢ > 0,
(6.4) T (y:K)<t<TH(y:k) ifandonlyif  ®](x;t) < @Z: (x3t) < @4 (x51).
We first prove the following estimate: for all 7/ : k' € P? such that v/ # ,
(6.5) VeI~ (Y :K),TT(:K), t-T"(:¥)< Too (@)1 (1) — Y (xs1)) -

If T (4" : k') = 0 then the inequality is trivial. If TF (9" : k') > 0, then assuming that v’ < v and
using (6.4), we obtain, for all t € [T~ (v : k'), T (v : k)],

Dl (x5t) > DL (xt)
¢

= (I)Z: (x; T~ (v : k) + / ’Uz,/ (x; s)ds
s=T— (y":k")
t
>0)(x; T~ (v : K)) —|—/ v}, (x; s)ds
s=T—(y":k")
t t ,
= &) (x;t) — / v} (x;8)ds + / v}, (x; 8)ds,
s=T— (y":k") s=T—(y":k")
so that
t
Dy (x5t) — Pp(x;t) > / (vl, (x55) — v (x; s)) ds > Lusu(t— T~ (v : k),
s=T— (y":k")

which yields (6.5). The case ' > v works similarly.
Let us now fix 0 < t; < t5. Certainly,

ta

(6.6) Dl (x5t2) — Rl(x5t2) = @) (x5t1) — @) (x;t1) + / (V41 (x58) — v (x5 5))ds.

s=t1
For all s € [t1, 2], either ®](x;5) = ®/,,(x;s), in which case v} (x;s) = v]_(x;5); or there exist
k <kandk >k + 1 such that clu(x;s) =~ : k---k, clu];(x;s) =7 : (k+1)---k, and thanks
to the fact that «y is a rarefaction coordinate, we have

vl (x;8) = /0_0 A7 (wﬂlﬁk(@(x; $))yeoy (1= 9)% + 9%, e ,wfyl:k(q)(x; s))) dé

< (Aa(@00). o B (@) ).

as well as
1 _

k k
vl (x;8) = /90 A7 (wi:(k_‘_l)(fb(x; §))y.., (1= 9)5 + 95, e ,w;l:(k_‘_l)(fl)(x; s))> dé

k
>\ (wi;(kﬂ)(@(x; B ) e ,wi(kﬂ)(@(x; s))) .

In both cases, we deduce that

k
0 08) = 07 (x58) 2 X7 (1) (006D v (B0 )

Y (w;:k@(x; . % (B s))>

> —Lic Y W) (@0 8)) — ol (@(x 9))|
Y'#EY
owing to Assumption (LC). Besides, it follows from (6.4) that, for all 4/ # ~,
/ / 1 <&
w?yl:(k—i-l)((l)(x; 8)) - w:yyzk((l)(x; 8))‘ = E Z ]l{T*(v/:k’)§s<T+('y’:k’)}u
k=1
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which we plug into (6.6) in order to get
(6.7)
((I)Z“(X; t) = ®i(x;t)) — ((I)ZH(X; ta) — @} (x;t2))

Lic 2
s - > Lz (yk)<s<T (y7:k)y A8
7k €Pd oy Ay S Th

Lic S — /
< =2 . _ :
<= > (TH(Y :K)Ata =T (v : k)
vk €PY A £y
T~ (k) <te, TT (v :k")>t1
Lic
< Z (PL o (THY K ) Atg) = L TH(Y 1K) Ata)),

nLUSH /.1 d 7/
vk ePy Y #y
T~ (k) <to, T (v :k") > 11
where the last inequality follows from (6.5).

Let M € {0,...,n(d — 1)} refer to the number of particles 7' : k' € PZ such that v' # v
and T— (v : k') < ta. Let Ty > Ty > --- > Ty refer to the nonincreasing reordering of the
corresponding quantities T (v : k') A ta, and let us define Ty := to > T} and Thyyq 1= 0 < Ty
For all m € {1,..., M + 1}, applying (6.7) with ¢t; = T}, yields

(I)Z-f-l (X; Tm) - (I)Z (X; Tm)

Lic
<0 (6 Th) — R(x Ty) + — S (@) (% ) — ) (3 Tor))
nLUsH m' T, >Th,

m—1

Z (q)’ll-',-l (X; Tm’) - (I)Z (X; Tm’)) )

m/=1

Lic
nLusu

<@L (xTo) — @Ux;To) +

which yields, for all m € {1,..., M + 1},

LLC m—1
‘I’ZH(X? Tm) — ‘I’Z(X§ T) < (1 + nLUSH) (‘1’Z+1(X; To) — (I’Z(?ﬁ TO)) .

In particular, for m = M + 1,

Lic \V
x) oy —a) =0 (x0) = @(x;0) < (1 + nLUSH) ()1 (x5t2) — @ (x512))

< p (P (xst2) — B (xs12)) -
Since to > 0 is arbitrary, the proof is completed. O

Let us recall that, given a bounded function F': R — R, the modulus of continuity wp of F is
defined by

V6>0, wr(d):=  sup |[F(z)—F(y)l,
z,y€ER:|z—y| <4

see [8, p. 80]. In particular, if F' is the CDF of the probability measure m on R, then
wr(0) =sup F(x + 0) — F(z) = supm((z,z + 9]).
z€R IS

Proposition 6.1.1 yields the following control of the modulus of continuity for rarefaction coordi-
nates.

Corollary 6.1.2 (Control of the modulus of continuity for rarefaction coordinates). Under the
assumptions of Proposition 6.1.1, let v € {1,...,d} be a rarefaction coordinate. Let u be a prob-
abilistic solution to the system (1.5) obtained by Theorem 2.4.5, and let (X, (t))t>0, v € (0,1) be
the trajectories associated with u defined by (5.1).

(i) For all s >0 and all v, € (0,1) such that v <7,

inf (Xg(t) - X;(t)) > % (Xg (s) — X7 (s)) :

t>s

where we recall the definition (6.3) of p.
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(i) If for some s > 0, u?(s,-) is continuous on R, then uY is continuous on [s,+00) x R.
(iii) For all § >0, for all t > 5 >0, Wy (z,.)(0) < Wy (s, (P).

Proof. In the proof, for notational simplicity, we do not consider subsequences and assume that
u[x(n)] converges weakly to [ such that w7 (¢,x) = H * T, () when n grows to infinity.

Proof of (i). Let us fix v, € (0,1) with v <7, and let n be large enough to ensure that [nv] > 1.
By Propositions 3.2.8 and 6.1.1, we have, for all t > s > 0,

B o (x(n);t) = @7 (x(n);t) > % (@7 (x(1)35) = @, (x(0):5) ),

that is to say
e ) (22 e (122)

n n

> 5 (etote, 7 (B) - st (1)),

Let us fix t > s >0, v € (0,1) and € > 0 such that both u?(s,-)~™! and u”(¢,-)~! are continuous at
v and v — €. Then for n large enough,

[nv]

n

v—€e< <wv

3

so that by Lemma 2.3.6 and the monotonicity of u? (s, )71,

(5) =) < mint x5, (122
)

< limsup v [x(n)](s,-) ! < -

n—-+o0o

) < w(s,) 71 (v),

and the same inequality holds at time t. Letting € vanish but keeping u”(s,-)~! and u?(t, )~}
continuous at v — €, we deduce that

i e](e,) ! (22 ) =) 0) = X206

n—-+o0o n

lim w[x(n)](t,-)"* ( o) ) = (t,) " (v) = X](1).

n—-+oo n

We deduce that dvdv-almost everywhere on {v < T},

v

X0 - X302 - (X35 - X1()

and since v — (X)) (s), X (t)) is left continuous, this inequality actually holds for all v,7 € (0,1)
with v < 7.

Proof of (ii). It follows from the definition of the pseudo-inverse of a CDF F' that F' is continuous
if and only if F~! is increasing. As a consequence, if u?(s,-) is continuous, then v — X (s) is
increasing, so that by (i), v — X (¢) is increasing, and therefore u” (¢, -) is continuous on R, for all
t > s. By the Dini Theorem, we conclude that u” is continuous on [s,4+00) x R.

Proof of (iii). Let us fix 6 > 0 and ¢ > s > 0. For all € R such that v (¢,z) < u”(¢,z + 0), let
v,7 € (0,1) such that v (t,r) < v <7 = uY(t,r + ). By (iii) in Lemma 2.3.4, X](t) > 2 and
X7(t) < x+ 6, which, by (i), implies

X2(s) = X3(s) < b,
and therefore u7 (s, X (s)) — u”(s, X7 (5)7) < wyr(s,(pd) so that, by (ii) in Lemma 2.3.4,
u(t,x +0) — 0 < Wy (s, (PO)
Taking v arbitrarily close to u(t, z), we deduce that

u’y(ta T+ 5) - u’y(ta I) < wu’*(s,v)(pis)a



40 Benjamin Jourdain and Julien Reygner

which finally yields
W (1,)(0) < War (s, (P0)
since x is arbitrary. O

6.2. Strong rarefaction coordinates. We now address strong rarefaction coordinates. A key
point in the proof of Proposition 6.2.1 below is the remark that, if v € {1,...,d} is a strong
rarefaction coordinate, then, for all n > 2, for all x € DY, for all k € {1,...,n — 1}, the particles
v : k and v : (k4 1) never meet at positive times in the MSPD started at x. Indeed, these
particles have distinct positions just after the initial time and if there existed ¢ > 0 such that
Dl(x;t) = @) (x;t), then this would imply that there is a particle 4/ : k" of another type
colliding with v : k and 7 : (k4 1) at the same time, and such that

DL(x;8) < @) (x58) < P (x58)
shortly before the collision. This is a contradiction with Assumption (USH).

Proposition 6.2.1 (Continuity of strong rarefaction coordinates). Under Assumptions (LC)
and (USH), let v € {1,...,d} be a strong rarefaction coordinate. Let u be a probabilistic solu-
tion to (1.5) obtained by Theorem 2.4.5. Then u” is continuous on (0,+00) x R, and if u is
continuous on R, then u?” is actually continuous on [0, +00) x R.

Proof. In the proof, for notational simplicity, we do not consider subsequences and assume that
[x(n)] converges weakly to [ such that u”(t,z) = H * ] (z) when n grows to infinity.

Let v € {1,...,d} be a strong rarefaction coordinate and ¢ denote the constant in (6.1). By
the Dini Theorem, it is clear that Proposition 6.2.1 follows if we show that, for all ¢ > 0, u"(¢,-)
is continuous on the real line. The point (ii) in Corollary 6.1.2 ensures that it is enough to
prove that u7(t,-) is continuous d¢-almost everywhere. Let us check this continuity property by
using the MSPD. To this aim, we recall that, by Proposition 4.3.1, d¢-almost everywhere, for all
v € {1,...,d}, the jumps of u”(t,-) and u (t,-) occur at distinct positions, and fix such a t > 0.
Let us assume that u?(¢, ) is discontinuous, i.e. that there exist v,7 € (0,1), with v < T, such that

Xy () = X5(t) =y
By the choice of ¢, there exists > 0 such that

ST Ly ) —u (L (y—m)7)] <

v #EY

c(v — )
6Lic

and by the Portmanteau Theorem [3, Theorem 2.1, p. 16], there exists n; > 1 such that, for all

n = ni,
c(v —v)

> )ty + 1) — w [x))(t (y —m) )] < 3o

Y Fy
On the other hand, the left continuous function v — X7 (t) is constant, and therefore continuous,
on [v,7). Up to replacing v with (v+7)/2, we may assume that v — X7(¢) is continuous on [v, 7].
Defining, for all v € (0,1), for all s > 0,
X7(s) = u[x(n)](t, )7 (v),
we deduce from Lemma 2.3.6 that
lim X)"(t)= lim X2"(t)=y,

n—+oo — n—-+oo

so that there exists no > 1 such that, for all n > no,

Y- g SXPM) < XFU) <y +

N3

As a consequence, we deduce from Corollary 5.1.2 that

7 x(n)] (s, X2 () — u [x(n)](s, X7 "(5)))|
¥ #Ey
c(v — )

<3 W )ty +n) — u [x(n It (v =7 < =

v #EY
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as soon as n > ny Vng and s < tis such that ¢ — s < 1/(4Lc,00). Now if n is large enough to
ensure that 7 — v > 1/n (say n > ng), then the processes (X""(s))s>0 and (X2 (s))s>0 describe
the motion of two distinct particles in the MSPD started at gc(n) In particular, according to the
discussion at the beginning of this subsection, for all s > 0, we have X7""(s) < X""(s) so that
u[x(n)](s, X5 (5)7) = w7 [x(n)](s, X" (s))- )

For all 5 € [0, ] such that t—s < 1/(4Lc, ) and n > n1VnaVns, we now recall the definition (2.3)
of XN {u[x(n)]}(s, X"™(s)) and (6.2) to write

X {ulx(m]} (s, X27(s)) = A {ulx(n)]}s, X7 (5))
> & (w ()] (s, X7 (5)7) = ' x(m)] (5, X2 (5) 7))
+ 5 (W )]s, X27()) = [x(m)] (5, X" (5)) )

~ Lo 3 w7 )]s, X3 (5)) — ()]s, X2 (5))]
Y'#FY
The last term of the right-hand side is larger than —c(v —7)/3, while Lemma 2.3.4 allows to bound
the sum of the first two terms by

= (W x5, X7 (3) ) = W b)) (s X7 ()7 + w7 ()] 5, X2 (5)) — w0 b)) (s, X7 (5)) )

> £ (w2 e, X7 (9)7) 04T — w5, X7 ()) > £ (@),
As a conclusion,
N {ualx(n)]}(s, X2 (s)) = X {ulx(n)]} (s, X7 " (s)) > g (T —v),

so that, fixing so € [0,t) such that t — s < 1/(4Lc,o) and using (4.2), we obtain
XT"(8) = X" (8) 2 X2 (s0) = X" (s0) + (= s0) 5 (T ),

which is a contradiction with the fact that lim, .o X2"(t) — X)"(t) = 0. As a consequence,
u”(t,-) is continuous and the proof is completed. O

Part 2. Stability estimates and construction of semigroup solutions
7. Uniform [? stability estimates on the MSPD

This section is dedicated to the proof of Theorem 2.5.2. In the scalar case, the latter result
immediately follows from Proposition 3.1.9, with £, = 1 for all p € [1,40o0], and holds under
Assumption (C) instead of the stronger Assumption (LC).

Throughout the section, we therefore always implicitely assume that d > 2. The heart of the
proof consists in establishing the following L! and L>° stability estimates: for all x,y € D¢,

sup [(xit) = (v 1)1 < Lilfe— vl

(7.1)
sup [|(x;2) = D(y:t)[|oc < Loollx = ¥llo,
>0
for some constants £1 and L., that do not depend on n.
We shall assume first that x and y satisfy the following conditions:

e they belong to the set of good configurations, which is introduced in Subsection 7.1 and
implies that the topology of the trajectories of the associated MSPD can be encoded by
elementary algebraic structures,

e they are locally homeomorphic in the sense that the trajectories of the associated MSPD
are described by the same algebraic structures.

Under these conditions, we translate the problem of estimating ||®(x;t) — ®(y;t)||1 and ||P(x;t) —
D (y;t)||oo into a purely algebraic problem, that we solve in Subsection 7.2 to obtain a local version
of (7.1).

We then extend this result to a global estimate by constructing paths joining arbitrary configu-
rations x and y in D that can be decomposed into small portions, on which our local estimate can
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be applied and then integrated along the path. This requires a detailed analysis of the geometry
of the trajectories of the MSPD, that we carry out in Subsection 7.3.

We finally derive Theorem 2.5.2 from (7.1) using the boundedness of the velocities for the
temporal estimate, and a classical interpolation argument to obtain stability in all the L? distances.

7.1. Collisions, self-interactions and good configurations. This subsection is dedicated to
the introduction of a few notions that shall allow us to describe the trajectories of the MSPD.
Following the construction made in Section 3, in the MSPD, the velocity of a particle is likely to
be modified by two types of events: collisions with particles or clusters of the same type, to which
we shall refer as self-interactions, and collisions with particles or clusters of a different type, to
which we shall refer as collisions.

7.1.1. Collisions and self-interactions. Let x € D%, with N(x) > 1. Recall that, for all (a : 14,/ :

n?

j) € R(x), the collision time 75%'5..(x) € (0,+00) was defined in §3.2.4. We now define the

«
associated space-time point of collision.

Definition 7.1.1 (Space-time point of collision). Let x € Dz with N(x) > 1. For all (a: 4,5 :
j) € R(x), we denote by

=coll 1 1
i g (%) = ( gc?i,ﬁ:j(x)ngfi,ﬁ:j(X)) € R x (0, +00)

the space-time point of collision between the particles o : i and 3 : j in the MSPD started at x,
where

Eotpg (%) 1= D7 (7ol (%)) = B (i 750ll5.5(%)) € R

For all x € DZ, we denote by
ICOH(X) = Eg’ilﬁj(x) (a:d,8:7) € R(x)}
the set of space-time points of collisions in the MSPD started at x. Of course, I°°/(x) is the empty
set if N(x) = 0.
We now define space-time points of self-interactions as the space-time points at which two

particles of the same type collide with each other. Our definition relies on the notion of left limit
of a cluster.

Definition 7.1.2 (Left limit of clusters). Let x € DY and v: k € P2 For allt >0, let
to :=1inf{s € [0,¢) : Vr € [5,8), N(®(x;7)) = N(P(x; 9))}.
Then we define the left limit in t of the cluster clu) (x;t) by

clul (x;t7) := U clul (x; s).

s€(to,t)

The fact that, at time ¢ > 0, two particles v : k and v : k' of different types collide with each
other is exactly described by the conditions

Pl (x;t) =), (x5) =: & and clu) (x;t7) # clul, (x;¢7),

and we shall say that (£,¢) is a space-time point of self-interaction for v : k& and v : k’. Let us
underline the fact that, while Assumption (USH) ensures that two particles of different types can
collide at most once, it is generically possible that two particles of the same type stick together
into a cluster, then that this cluster be split by a collision with a cluster of another type, and that
the two particles collide again with each other.

Definition 7.1.3 (Space-time points of self-interactions). Let x € D4. For all v € {1,...,d}, for

all k, k" € {1,...,n}, we define Ifﬁgﬂ:k, (x) as the set of space-time points (§,t) such that

D) (x;t) = @], (x;t) =¢ and  clu)(x;t7) # clu), (x;t7).

Although the set Ifﬁlkfﬁ: 4w (X) may contain more than one element, the particles v : k and ~y : ¥’
cannot collide more than once between each collision with particles of other types. Since there is
only a finite number of such collisions, it is clear that the set Isvc;lkfm 4w (x) always contains a finite
number of elements.
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We finally define the set of space-time points of self-interactions in the MSPD started at x as

self self
I U U Lk (

y=1k,k'=1
7.1.2. Configurations with no collision at initial time. We define the subset D of D as follows.

Definition 7.1.4 (Configurations with no collision at initial time). The set D is the set of config-
urations x € D% such that, for all (o :i,8: j) € (P)? with a < B, then z& # :Cf

Certainly, D is a dense open subset of DZ. Further properties of the set D are discussed in
Lemma A.1.2 in Appendix A.

7.1.3. Good configurations. We now define the set G of good configurations as follows.

Definition 7.1.5 (Good configurations). The set of good configurations G C DZ is defined by
x € G if and only if x € D and either N(x) =0, or N(x) > 1 and:
(i) ];r alé (a:d,8:7),(c 7,58 :j') € R(x), B 5,;(%) = B gr.jo () implies o = o and
(ii) the sets I°°(x) and I**"(x) are disjoint.

The point (i) expresses the fact that collisions are binary, i.e. they never involve particles of
more than two types. The point (ii) means that two clusters of the same type cannot collide with
each other at the same time as they collide with a cluster of a different type: self-interactions are
separated from collisions, see Figure 2.

FIGURE 2. The left-hand side of the picture shows the trajectory of the MSPD
started at a good configuration, since self-interaction space-time points are sepa-
rated from collisions. On the contrary, the right-hand side of the picture shows
the trajectory of the MSPD started at a configuration that cannot be good, since
two distinct clusters of the same type have a self-interaction at the same time as
they collide with a cluster of another type.

Subsection 7.2 provides detailed topological properties of the trajectories of the MSPD started
at a good configuration, while Subsection 7.3 rather addresses the geometric properties of these
trajectories.

7.2. Local stability estimates. In this subsection, we establish the estimates (7.1) for initial
configurations x and y satisfying particular properties. In order to formulate these properties,
we first introduce in §7.2.1 some algebraic structures encoding the topology of the trajectory
of the MSPD started at good configurations. In particular, we define the collision graph of a
good configuration as the oriented graph describing the order of collisions of each particle in the
associated MSPD.

In §7.2.2, we say that two good configurations satisfy the Local Homeomorphic condition (LHM)
if they have the same collision graph and also satisfy a few more technical properties. For such
a choice of inital configurations x and y, we are able to derive in §7.2.3 a system of recursive
inequations, indexed by the collision graph, on the distances ||®(x;t) — ®(y;t)||1 and ||P(x;t) —
O(y;t)||oo at the instants of collisions. The transcription of this system into a purely algebraic
problem is made in §7.2.4, and the latter problem is solved in §7.2.5.
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7.2.1. Trajectories of the MSPD started at good configurations. We first introduce a few notions
to describe the topology of the trajectory of the MSPD started at good configurations.

Collisions. Let x € G, with N(x) > 1. We define the equivalence relation ~ on R(x) by, for all
(a:4,8:7),( ¢, 8 :j) € R(x),

(a:4,8:7)~ (' :4',8 :5)  if and only if B 5 (%) = BN g0 (%).
Let C(x) := R(x)/ ~ refer to the set of equivalence classes and M(x) > 1 denote the cardinality
of C(x). Each equivalence class ¢ € C(x) is naturally associated with a space-time point

E(x;5¢) = (§(x5¢), T(x;¢)) € R x (0, +00),
defined by
E(x;¢) =250 5,5 (%) for any (a:4,8:7) € c.

In addition, the point (i) of Definition 7.1.5 implies that, for all ¢ € C(x), there exist «, 3 €
,...,d} such that a < 8 and, for all (o' :7",8" :j") €¢, @’ = a an = 5. Letting
1 d h th B and, for all (o’ :4',53" : §' ! d 8’ = 3. Letti

a:={a:icP?:38:j€ P! (a:i,B:j)€Ec},
b:={B:jeP?:3a:ic P! (a:i,B:j)€c}

it is easily checked that ¢ = a x b. Note that, due to the point (ii) of Definition 7.1.5, for all
(a:4,8:7) € axb,cluf(x;T(x;¢)”) = a and cluJﬂ-(x;T(x; ¢)”) = b. However, the clusters a
and b can be splitted at the collision if the velocities of the particles after the collision do not
satisfy the stability condition (3.1), therefore we generally only have cluf(x;T(x;¢)) C a and
clu?(x; T(x;c)) Cb.

In the sequel, we shall simply refer to the equivalence classes as collisions, and say that a
generical cluster c¢ is involved in the collision ¢ =a x bif c=a or ¢ =b.

If x € G and N(x) = 0, we simply define M(x) = 0.

Collision graph. Let x € G. Forally : k € PZ, we denote by C..x(x) the subset of C(x) composed
by the collisions ¢ = a x b such that v : k € a Ub. Note that C,.;(x) is empty if the particle v : k
does not collide with a particle of another type in the MSPD started at x. Clearly, two distinct
collisions ¢/, ¢ € C,.x(x) have distinct instants of collision T'(x;¢") # T'(x;¢), since two distinct
collisions involving the same particle v : k cannot occur at the same time. As a consequence, the
increasing order of instants of collisions induces a total order on the set C,.;(x), to which we shall
only refer as the order of collisions.
For all v € {1,...,d}, for all ¢, c € C(x), we shall write

¢ B

whenever there exists k € {1,...,n} such that ¢/, ¢ € C,.x(x) and c¢ is the next element after ¢’ for
the order of collisions on C.,.x(x). The collision graph of a good configuration x is now defined as
the oriented graph with set of vertices C(x), and set of arcs induced by the relations ¢’ e If
N(x) = 0 then the collision graph of x is nothing but the empty graph.

By construction, an arc is naturally associated with at least a type v € {1,...,d}, and since
Assumption (USH) ensures that two particles of distinct type can only collide once, each arc
actually has a unique type. Besides, since ¢/ = ¢ implies that T'(x;¢) < T(x;c), there is no
oriented cycle in the collision graph.

Numbering the collisions. Let us now explain how to number the collisions ¢ € C(x) in a
consistant fashion with the partial order induced by the orientation of the collision graph.

Lemma 7.2.1 (Numbering the collisions). Under Assumptions (C) and (USH), let x € G, with
M = M(x) > 1. Then the set of collisions C(x) can be numbered in such a fashion ci,... cpr
that, for all m',m € {1,..., M} satisfying

.
Cm/ — Cm

for some v € {1,...,d}, then m’ < m.
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Proof. Let us call leaves the collisions ¢ € C(x) such that there is no ¢ € C(x) pointing toward ¢
in the collision graph. Clearly, ¢ is a leaf if and only if, for all v : k& € P9 such that ¢ € C,n(x),
¢ is the minimal element of C..;(x) for the order of collisions. Since there is no oriented cycle in
the collision graph, the set of leaves is nonempty, and this property remains true for all nonempty
subgraphs of the collision graph obtained by removing a leaf and its adjacent arcs.

We now proceed as follows: we choose one leaf, call it ¢;, remove it from the graph together
with all the adjacent arcs, and restart the construction as long as the graph is nonempty. At the
m-th step, the selected collision c¢,, is minimal, for the order of collisions, among the remaining
elements of all the sets C.; to which it belongs. This ensures that the numbering is consistent
with the partial order induced by the orientation of the collision graph. ([

Remark 7.2.2. An effective way to proceed as in the proof of Lemma 7.2.1 is to number the
collisions in the increasing order of collision times. If several distinct collisions have the same
collision time, then they cannot involve the same particle; therefore, any local ordering of these
collisions leads to a numbering satisfying the conclusion of Lemma 7.2.1.

Last collision time. For all vy : k € PZ, we finally define T4 (x) by

%) 1= 0
if C,.x(x) is empty, and
X (x) = T(x;
v (X) 3= max T(x;c)

otherwise.

7.2.2. Statement of the local stability estimates. Two configurations x,y € D are said to satisfy
the Local Homeomorphic condition (LHM) if:
(LHM-1) x,y € G and R(x) = R(y) =: R,
(LHM-2) x and y have the same collision graph, which in particular implies C(x) = C(y) =: C,
(LHM-3) for all ¢ € C, letting T~ (c) := T'(x;¢) A T(y;¢) and T (¢) := T(x;¢) V T(y;¢),
(a) for all arcs ¢ % ¢, T*(¢) < T (c),
(b) if T7(¢c) = T(x;¢) < T(y;c) = T"(c), then for all («: i,/
cluf (x;t) = cluf(x; T
vVt e [T(x;¢), T(y; )],
T6x;0), Ty )] cluf (x;t) = clu T

cluf (y; ¢
Vit € [T(x;¢), T(y;c)), { =l (y; T(x;¢))

and a symmetric statement holds in the case T~ (¢c) = T'(y;¢) < T'(x;¢) = T (c).
The time intervals [T (¢), 7" (c)] shall be referred to as collision intervals.

clu? (y;t

Condition (LHM-3b) only expresses the fact that no self-interaction occurs on collision intervals.
We are now able to state our local stability estimates.

Proposition 7.2.3 (Local stability estimates). Under Assumptions (LC) and (USH), for all
x,y € D¢ satisfying Condition (LHM),

sup (|20 1) = @(y; Dy < Lallx =yl

t>

sup |[@(x;1) — 2(y;t)|[oc < Loo|[x = ¥lloo,
>0

where L1 and Lo are defined in (2.9).

The proof of Proposition 7.2.3 is detailed in §7.2.3, §7.2.4 and §7.2.5 below. Throughout these
paragraphs, we fix x,y € D% satisfying Condition (LHM) and adopt the notations of Condi-
tion (LHM) by denoting by R the set R(x) = R(y), by N = N(x) = N(y) its cardinality, by
C' the set of collisions C(x) = C(y) and by M = M(x) = M(y) its cardinality. Besides, Condi-
tion (LHM-2) ensures that, for all v : k € P, the sets C..x(x) and C..x(y) are the same, with the
same order of collisions. These sets are denoted by C,.,. We finally denote

v = TR0 v TR (y)-
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For all t > 0 and 7 : k € P, we define
drei(t) = g (x5 1) = DLy t)],
so that

[|@(x;t) — D(y; )|l = — Z dy:k(t) |@(x58) = D(y;t)|[oc = sup dyi(t).
VkEPd v:kePg

In §7.2.3 we provide local (in time) estimates on the growth of d..;(¢) inside and outside collision
intervals. In §7.2.4, we introduce an auxiliary system that shall allow us to integrate these estimates
along the whole sequence of collisions, and we explain how this auxiliary system can be coupled
with the family of processes {(d:x(t))t>0,7 : k € P4}. In §7.2.5, we obtain a bound on the auxiliary
system that is transferred to the original processes ||®(x;t) — ®(y;t)||1 and ||P(x;t) — D(y;8)||0
thanks to the coupling argument developed in §7.2.4.

7.2.3. Preliminary estimates. Let us first collect the following preliminary estimates on the joint

evolution of the family of processes {(dy.x(t))i>0,7 : k € P2}.

Lemma 7.2.4 (Preliminary estimates). Let the assumptions of Proposition 7.2.3 hold.
(i) For allc=axbeC, forallt € [T (c), TF(c)],

max do.i(t) < <1+ |b|)||de +—Zdﬁj (c)),

ai€a B:j€Db
] _
sy o) < (14 Zlal) oo 5l @)+ 5 ol 0

where we recall that © = 3L1,c/Lysu-
(it) Letc=axbe C, c€ {a,b} and v := type( ). Forally:k € c, let us define t!, .= T(c')

if there exists ¢ € Cy.1, such that ¢ — ¢, and t! ik = 0 otherwise. Then, for allt <T~ (¢),

Z L, 3y (t) Z Liese |, ydyk(t L)

y:k€c v:k€c
sup ]1{t>t' }dv k(t) < sup ]l{t>t;,k}d’72k(tfy:k)'
y:k€c v:k€c '

(iii) For allt >0, for all v in {1,...,d},

Z Lsgmasydyp(t) < T gsgmasy dyr(THRY),
k=1

k=1
Sup ]l{t>Tmax}d’y k( ) < sup ﬂ{t>T};‘:‘;"}d'y:k( ;HI?X)
1<k< 1<k<n

Let us highlight the fact that ¢/ , and T'f* play similar roles in the respective cases (ii) and (iii).

Proof of Lemma 7.2.4. We first address (i) and fix ¢ = a x b € C. We assume that T~ (¢) =
T(x;¢) < T(y;c) = T (c), the opposite case is symmetric. Let us denote x’ := ®(x;T(x;¢)) and
= ®(y; T(x;¢)). For all t € [T'(x;¢),T(y; )], we first remark that the value of
§'(1) == 7 (6 T(x0)) + (1 = T(x;0))vf (y; T (x5 ¢))

does not depend on the choice of a: i € a. Indeed, ®¢(x; T (x;¢)) is the location of the collision ¢
in the MSPD started at x, while Conditions (LHM—3a) and (LHM-3b) ensure that, for all « : i € a,

v (y; T Z X (y

azEa

We shall use the following facts, the proofs of which are postponed below.

Fact 1: the processes {®%(x;t) : o : i € a} and {£2(¢) : @ : i € a} follow the Local Sticky
Particle Dynamics on [T'(x;¢), T'(y; )], with respective initial velocity vectors (Af(x’))asicq and
(A? (y/))a:iEa-
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Fact 2: for all a: i € a,

- - L

A () = Ay < = ol.

n
Fact 3: for all a: i, : i’ € a, for all t € [T(x;¢), T (y;¢)],
L
25 (x:£) — B3 (x: )] < 2T(y:¢) — T(ax;0)) == ).

Fact 4: the nonnegative quantity T'(y;c) — T(x;¢) satisfies

|b|zdﬁj (x;¢)) ||Zd‘“ (x;0))

B:j€Db ai€a

T(y;c) —T(x;¢) < LUSH

Taking these facts for granted, we now fix a : i € a and write, for all ¢t € [T'(x;¢), T (y;¢)],

(7.2) dai(t) < |07 (x;) = &7 ()] + [®F (y; 1) — & (D))
On the one hand, it is clear from Conditions (LHM-3a) and (LHM-3b) that the value of ®¢(y;t)

does not depend on the choice of v : i € a, and that ®$(y;t) and £ (¢) evolve at the same velocity,
so that

(7.3) [0 (y;t) = & ()] = |@F (35 T (x5 ¢)) — (T (x5 ¢))| = dasi (T( Z doir (T

azEa

On the other hand,
|7 (x;1) — Z {|0F (x:t) — DT (x5 8)| + [T (x3) — &7 ()]}

azEa

and combining Facts 1 and 2 with (1) in Proposition 3.1.9 yields

Y @3 (xt) — &5 (1)

i’ €a

< DN T(x;0) — £ (T(x;0))| + (t = T(xs¢))

i’ €a i’ €a

Lic
< T|a||b|(f - T(x;¢)),

while Fact 3 gives

Z @7 (x;1) — i (x;1)] < plie |a||b|(t— T(x;¢)).

As a consequence of the two previous inequalities,

@ﬂxﬂ—&%ﬂ§3%§W@—Tkﬂ)

S 10|
%‘Z% D+ 2 et (TG0 |
i’ Ea

B:jeb

where we have used Fact 4 at the second line. Then the conclusion is obtained by plugging this
inequality and (7.3) into (7.2), and the uniform bound on dg.;(t), 8 :j € b in (i) follows similarly.

We now prove the Facts 1, 2, 3 and 4 used above.
Proof of Fact 1: The process {{8(t) : a : i € a} follows the Local Sticky Particle Dynamics
on [T'(x;¢), T(y; c)], with initial velocity vector (A*(y’))asica, as a straightforward consequence of
its definition. Let us use (ii) in Lemma 3.2.11 to prove that the process {®%(x;t) : « : i € a}
follows the Local Sticky Particle Dynamics on [T'(x;c¢),T(y;¢)]. By Condition (LHM-3b), for all
a:i€a,cluf(x;T(y;¢)) C a, and the set T,.4(x) as is defined in (3.11) has an empty intersection
with (T'(x;¢),T(y;¢)). As a consequence, Lemma 3.2.11 asserts that the process {®¢(x;t) : «
i € a} follows the Local Sticky Particle Dynamics on [T'(x;¢), T (y; ¢)], with initial velocity vector
(A (%)) asica-
Proof of Fact 2: Let us first check that, for all «: i € a,
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e for all Y g {Oé, ﬂ}a wg:i(xl) = wg:i(y/)a

o [wos(x') = waa(y)] < [bl/n.
By the definition of w) ,(x') and w_ ,(y’), the first point above easily follows if we prove that, for
all v : k € P4 such that v ¢ {, 8} (say v < ),

) <z if and only if  y. <y

But let us assume for instance that z;) < z/® and y,’ > y/®. Then by Condition (LHM-3a), the
collision with « : k comes after ¢ in C,.;(x), while it is either not in C,.;(y), or it comes before c.
This is a contradiction with Condition (LHM-2). As far as the second point above is concerned, the
same argument shows that the particles 8 : j that do not belong to b have the same contribution
in

1 n
B8 /

. —_— - ]l Iz ’
wa.z(x) n § : {z ijﬁ}

and in

S|

n
B ol
Waei () = = D Lpyasy iy
st
8

which is enough to ensure that |w§;i(x’) —w, . (¥y')| <1b]/n. As a consequence, it follows from the
definition of A and Assumption (LC) that, for all a: 4 € a,

3 () = Ae(y)

Lic 1

S_
n

which completes the proof of Fact 2.
Proof of Fact 3: Let us write @ = o : 3-- -1 and first remark that, for all a : i, : i’ € a, for all
te[T(x;c), T(y;0)],

| D& (x;t) — PF(x;t)] < @%(x; t) — @g(x; t),

and, by Conditions (LHM-3a) and (LHM-3b),
D (x;t) — B (3 ) = (¢ = T(x;0)) (02 (s Txs ) — v (x: T ) )
< (T(y;0) = T0x:9)) (1206 T(x; ) — v (6 T(x;0)) )

If cluf’ (x; T(x5¢)) = cluf (x;T(x;¢)), then v&(x;T(x;¢)) = v*(x;T(x;¢)) and Fact 3 is trivial.

Otherwise, let us write clug (x; T'(x;¢)) = a :i---i" and cluf (x; T'(x;¢)) = a : - d, withi <i' <
7 <i. Then

0 <v¥(x;T(x;¢)) — vl-o‘(x,T(x7 ¢))

LS e - — S R
Z/_Z+1i:i 3 z z/+1 — 3
S o AN I N o FY)
7’/_1—"11:1 i i/_l-_i_li:l i
RN o WA S b e
Z/_Z+1,L:,L_ 1 5_5/4_1 —~ 1
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where Conditions (LHM-3a) and (LHM-3b) allow us to use Lemma 3.1.7 and get

1 S Yo a
Z-/_i_’_l;)‘i(yl) Z)‘

We now deduce from Fact 2 that each sum in the right—hand side above is lower than 2|b|Lyc/n,
which completes the proof of Fact 3.
Proof of Fact 4: Note that ®¢(y; T(y;¢)) = @? (v;T(y;¢)), which rewrites

z—z +1

T(y;c)
Vi T0c0) ~ 0 (viTie) = [ 7 lvis) o] (o)
s=T(x;c¢
owing to (3.2). On account of (3.10), the right-hand side above is larger than Lysu(T(y;¢c) —
T(x;¢)), so that

T(yi0) = Tx©) < 17— ()3 T(x:0) — 8 (v Tx; )
= (B T ) — B0 T(x50) + 5 (5 T(x; ) — 5 (v T(x; )
USH
< (1900 T ) — @06 T )]+ 195 (06 T ) — B (y: T )
USH
= (T 0) + e (T )
USH

where we have used the fact that @? (x;T(x;¢)) = ®¢(x; T(x;¢)). Taking the sum of both sides on
(a:4,8:j) € axband then dividing by |a||b|, we obtain

T(y;e) = T(x¢) < LUSH |b|zdﬁa |de (x:0)) | ,

B:jeb ai€a
which completes the proof of Fact 4 and (i) at the same time.
Proof of (ii) and (iii). Let usfix c =axbe C, c € {a,b} and v := type(c). As a preliminary step,
let us point out the fact that, for all v : k € ¢, the quantity th:k defined above easily rewrites
g = max{(T"(c))” A Trx(x), (T (c)) A Tyer(y)},

where we recall the definition (3.12) of T~ A T.x(x) and T~ A T5:.(y). As a consequence, on the
time interval (t/v: o I (c)), the particle v : k does not collide with any particle of another type,
neither in the MSPD started at x nor in the MSPD started at y.

Let us denote by ¢} < --- < t, the ordered elements of the set {t/ .7 : k € c}. For all
I € {1,...,r}, we denote by ¢; the set of particles v : k such that ¢/ , = ¢;. We also define
t.,1 =T (c) > t].. Thanks to Condition (LHM-3b), for all [ € {1,...,7}, the processes

{®)(x;t) v ke U---Ug} and {@)(y;t):v:keaU---Ug}

follow the Local Sticky Particle Dynamics on [t],#; ], with the same initial velocity vectors. As a
consequence, (i) in Proposition 3.1.9 yields, for all ¢ € (¢}, ],

Z Lieser, ydyk(t) = Z dy.ke (1)

v:k€c y:k€ciU---Ucy
N —
< E , d’y:k(tl> = E 'yk tl E d'vk 'yk
~y:k€ciU---Uey y:k€ciU---Uep—q ~y:k€cy

therefore we obtain by induction that, for all ¢t < T~ (c),

Z ]l{t>t’ k}d’Yk ) < Z Z d’yk 'yk Z d'y:k(tiy:k)-

v:k€c =1 v:keq vy:k€c
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Applying (ii) in Proposition 3.1.9 instead of (i), we similarly obtain
sup ]l{t>t;.k}dv:k( ) < SUP dy. k(. i k)
v:k€c ' vy:k€

Finally, (iii) is obtained by the same arguments as (ii): fixing v € {1,...,d} and denoting by
Ty < --- < T, the ordered elements of the set {T;‘},jx,k € {1,...,n}}, we obtain that, for all
1 € {1,...,7}, the processes {®](x;t) : TJp* < T;} and {®](y;t) : TU* < T} follow the Local
Sticky Particle Dynamics on [T}, T;+1) (where we take the convention that T;.11 = +00), with the
same initial velocity vector. The conclusion follows in the same fashion as for (ii). g

7.2.4. Coupling with an auziliary system. Let us fix a numbering of the collisions ¢1,..., ¢y as is
provided by Lemma 7.2.1. Following the estimations of Lemma 7.2.4, for all m € {1,..., M}, for
all v : k € ap Uby,, dy (T (¢1,)) s intuitively expected to be bounded by the quantity e, (v : k)
defined as follows: for all v : k € P2, eg(y : k) := d4.1,(0); while, for all m € {1,..., M},

o forall a:i € apy,
1 (S .
em(a i) = 1+—|bm| T Z em—1(c )+E Z em—1(8:7),
am a:i’' Eam ﬂ'jebﬂl
o for all 5:j € by,
) 1 n, © .
en(B:3):= (1+ Dol T 2 e84 D emealad),
B:3' Ebm, Q:1€EAm
o forall y:k ¢ am Ubp,
em(Y: k) i =em_1(y: k).

The sequence of functions (e,,)o<m<ar on P? is called the auziliary system. Let us note that we

have the following monotonicity relation: for all m € {1,..., M},
(7.4) Z em(a:i) > Z em—1(a: i), Z em(B:7) > Z em-1(8: 7).
Q:i€am ai€am B:jEbm, B:jEbm,

The total mass of the auxiliary system is the nondecreasing sequence (E,)o<m<nr defined by
Em = Z em(y i k);
~v:kePg
in particular,

(75) = yll = =2,

The coupling between the auxiliary system and the family of processes {(dy.x(t))i>0,7 : k € P4}
works as follows.

Lemma 7.2.5 (Coupling with the auxiliary system). Let us assume that the conditions of Propo-
sition 7.2.3 hold.

(i) For allm e {1,...,M}, for allt € [T~ ( m), T
Va: i € am, wi(t)
VB:j € bm, dﬁa()

/—\

tm)];
m(o i),
m(B:J)-

<e
<e

(i) For allt >0,

005 t) — @)l =+ 3 dyalt) <

(i) For allt >0,

[@(x;) = P(y;t)lloo = sup dyk(t) < sup  sup em(y: k).
v:kePd 0<m<M ~:kePg
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Proof. The proof of (i) works by induction on m € {1,...,M}. Let m € {1,..., M} such that, if
m > 2, then for all m’ € {1,...,m — 1}, for all t € [T~ (¢ ), T (¢pnr )],

Yo : i € apy, do:i(t) < emr(a: i),

VB 1j € by, d@;j(f) < em/(ﬁ j)

Let us fix a : i € ap,. By (i) in Lemma 7.2.4, for all ¢ € [T’(cm),TJr(cm)],

©
da:i(t) < <1+g|bm|> | | Z davir (T~ (em) Z dﬁﬂ “(em)),

i’ €am ﬁjeb

and by (ii) in Lemma 7.2.4,

Z dal Z dal az) Z dﬁﬁj Cm Z dﬁ]tﬁ]

i/ Eam i Eam B:jEbm 6 JEbm

where ¢/ ., is TF(¢') if there exists ¢/ € Cy.i» such that ¢’ % ¢ and 0 otherwise; t,'&j in the second
inequality is defined similarly.

Let mq,...,mxg < m — 1 be the indices of all the collisions ¢’ such that ¢ = ¢,,, and for all
ke {1,...,K}, let us denote by ay,, the cluster of type a involved in the collision c¢,,,. Then

K
Z da:i/(tfx:i/)zz Z da:i’(T+(cmk))+ Z dair(0).

! Eam k=1 a:i’Eaﬁnk ! Eam: ta 1,—0

Forall k€ {1,..., K}, mpy <m —1 so that

Z dair(TT (e, ) < Z em, (i) = Z empt1(:i) == Z em—1(a: 1),

’ ’ ol ’ gl ’
ai’€al, g’ GamIc @t GamIc @t Gamk

while, for all « : ¢ such that ¢/, =0,
do:ir(0) = ep(a i) =er(a:i) = =em_1(a:i).
As a conclusion, for all t € [T (), T (cm )],

o) < (14201} - X e )42 X ena(5i) = enla )

| ml i/ Eam B:jEbm

and the bound on dg.;(t), B:J € by, t € [T~ (¢n), T (¢yn)], follows from the same arguments.
We now address (ii) and (iii). Let us fix £ > 0 and note that, at time ¢, a particle vy : k € P? is
in exactly one of the following cases:
(1) there exists ¢ € C.; such that T~ (c) <
(2) t <T7% and, for all c € Cyy, t & [T (c), T*( )]
(3) t > T
If the particle 7 : k is in case (1), let us note that, by Condition (LHM-3a), there is only one
¢ € Cy., such that T7(¢) <t < T7(c). Let pe(7y : k) denote the number of the collision ¢. By (i),
dry:k(t) < e#t(,ﬁk)(v k).
In case (2), let us denote by ¢ the first collision ¢ € C..;; (for the order of collisions) such that
t <T7(c). Let t/ ; be defined as in Lemma 7.2.4. If ¢/ ;, = 0, then we let u:(y : k) = 0 so that
Ay (1) = €puy(r:k) (7 1 k). Otherwise, there exists ¢’ € Cy., such that ¢ 2 ¢, in this case we let
pe(y ¢ k) refer to the number of the collision ¢ and (i) yields dy.x(t].;) < €, (v (v 1 k). Let us
now note that, calling ¢ the generical cluster of type v involved in the collision ¢, for all v : k¥’ € ¢
such that ¢/ ;, <, then v : k" is also in case (2), and (ii) in Lemma 7.2.4 yields

Y L ydw () S D0 Lisr yeunn (v K),
vy:k'€c ~v:k’'Ec

sup Ly ydyw (8) < sup Doy yep, (qun (v K.
~y:k'€c ~y:k'Ec
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In case (3), if Cy is empty, we define pu(y : k) = 0 so that dy(T5) = € (i) (v 1K),

otherwise, we denote by p:(y : k) the number of the last collision in C.., and then (i) yields
Aoyt (T35) < €y (k) (7 ¢ k). Similarly, (iii) in Lemma 7.2.4 yields

Z L gmesydyig (t) < Z ]1{t>T;f}g;<}6m(y;k')(”Y k),

k=1 k=1
sup ]l{t>T”_‘:j‘}d’y:k/ (t) S sup ]l{t>T“_‘,‘:7‘}em(v:k’)(”Y . k/)
1<k'<n : 1<k'<n :
As a consequence, we have constructed a function j; : P4 — {0,..., M} such that
(7.6) Z dy:i(t) < Z (k) (7 1K), sup dyx(t) < sup ey (k) (7 1 ).
v:kePZ v:kePZ v:keP] v:ke P

The point (iii) easily follows from the second inequality of (7.6). We also obtain

1
1B(x;t) = @(yit)[1 <= Y sup en(y:k)
n ~v:kePZ Osms<M

as a straightforward consequence of the first inequality, but the sum and supremum are in the
reverse order compared with (ii). Hence we need to work a little more on the first inequality.

Let us define 7z, (7 : k) as the index of the first collision in C.;; with number strictly larger than
wue(y : k), or M 4 1 if there is no such collision. We now check that the function p; satisfies the
following two conditions, which will enable us to conclude thanks to Lemma 7.2.6 below.

(*1) for all v : k € P such that p(y: k) € {1,..., M}, then ¢, (yk) € Cyiks
(*2) for all £ > 0, there is no path
Cmo By B Bocy,
such that
mo € {B,(y' k)7 K e P}, mee{m(yik),vike P}
in the collision graph, where the case £ = 0 is understood as the condition that the two
sets above be disjoint.

It follows from the construction of p; that the latter satisfies (*1) as well as the property that, for
ally: k € P4,

o if py(y: k) € {1,..., M}, then T~ (¢, (yu)) < t,

o if T, (v: k)€ {l,..., M}, then T (cg,(y:k)) > L.

As a consequence, if there exists a path
e B o, B M
in the collision graph, with mo = ,(y" : k'), m¢ = pe(7y : k), for some +' : &',y : k € P?, then
either ¢ = 0 in which case t < T (¢, ) < t is absurd, or Condition (LHM-3a) yields t < T~ (ty,) <
T~ (¢m,) < t, which is also absurd. As a conclusion, there is no such path in the graph, and p;
satisfies (*2).
Following Lemma 7.2.6 below, Conditions (*1) and (*2) imply that
Z € (v:k) (7 : k) <&wm,
v:kePg
which allows us to complete the proof by injecting this inequality into the first part of (7.6). O
The proof of (ii) in Lemma 7.2.5 relies on Lemma 7.2.6 below. Before stating the latter, we first
introduce a few notions. For all functions p : P4 — {0,..., M}, we define i : P4 — {1,..., M +1}
by, for all v : k € P4,
a(y k) =min({pu(y: k) +1,...,. M0 {m:cpn € Cyp})
if the set in the right-hand side is nonempty, and
w(y:k)=M+1
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otherwise. Note that, for all v : k € P?, Ti(y : k) > u(vy : k) and

(77) Cu(y:k) (7 : k) = eu(’y:k)-i-l(p)/ : k) == eﬁ(v:k)—l(p)/ : k)

Let us also denote by M the set of functions p : P4 — {0, ..., M} satisfying the conditions (*1)
and (*2) introduced at the end of the proof of Lemma 7.2.5 above. For u € M, combining (7.7)
with (7.4), we now remark that the group of particles « : k such that 7(+ : k) is minimal satisfies

Z eu(yk) (7 1 k) < Zeﬁ(’wk)w 1 k),
so that one obtains an upper bound on »__; c pa €, (v (7 © k) if one replaces p(y @ k) with z(y : k)

for those particles. Iterating the argument until all the quantities (v : k) reach the maximum
value M + 1, we finally obtain the expected upper bound &,;. The rigorous formulation of this
iterative argument is detailed in Lemma 7.2.6.

Lemma 7.2.6 (Property of the set M). For all functions pu : P — {0,..., M} in the set M
introduced above, we have

Z eutvk) (7 k) < Emr
y:k€PZ

Proof. For all functions p : P4 — {0,..., M}, let us define

o, := min u(y:k)e{l,...,M + 1},
i V}&H}gdu(v )eA{ ¥

n

and let us denote by M, the set of functions y € M such that z, < M. Then we have the following
property: for all u € M., for all v: k € P4,
(7.8) oy k) =m0, if and only if ¢z € C,uk.

Indeed, the direct implication is a straightforward consequence of the definition of . The reverse
implication stems from the following argument: if v : k € P? is such that ¢g, € Uk, then the
minimality of &, implies that @(y : k) > @,. Assume that n(y : k) > 7, then by (*1) and the
definition of T, we have that @, < u(y: k). As a consequence, there exists a path

7. 7.
Ca, = Cu(yek)

in the collision graph, which is a contradiction with (*2).
For all u € M., we now define 7 : P — {0,..., M} by, for all v: k € P%,

ply o k) iy k) > @,
Ti(y s k) = _( ) _( ) -
i, if 7i(y : k) =&,
Let us note that, for all v : k € P? such that 7i(y : k) > 7,, then 7fa(y : k) = 7i(y : k) and as a
consequence,
(7.9) T, > [l

We now prove that 7 € M. The fact that 7 satisfies (*1) easily follows from (7.8) combined
with the fact that p satisfies (*1). As far as (*2) is concerned, let us assume by contradiction that
there exists a path

e D e B

in the collision graph, with mo = 7a(y' : k'), me = 7u(y : k), for some v : k', : k € P, Then
Tu(y k) =mg > mo =TR(Y : K') > T, > T,

where the last inequality follows from (7.9). As a consequence, we deduce from the construction

of 7y that me = p(y : k), while my is either Ti(y" : k') or such that ¢z_ 2 ¢,y In both cases, there
is a contradiction with the fact that u satisfies (*2).
The introduction of the operator 7 allows to obtain the following key property: for all u € M,,

Z eu(rvik) (7 1 k) < Z erp(yik) (7 1 k).

v:kePd ~y:kePg
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To prove this inequality, it suffices to check that

Z eu('y:k:) (7 : k) < Z €, (FY : k)v

'y:kGPg 'y:kGPg
(v:k)=T, a(v:k)=n,

which follows from the sequence of assertions

Z Cp(vy:k) (v: k)= Z ep.—1(y k)

y:ke P y:keP?
E(yk)=T, (yik) =T,
= > e alai)+ Y ena(B:))
ai€ay B:jeby
< Y eplaii)+ Y en(B)),
ai€an B:jebr

where we have used (7.7) at the first line, (7.8) at the second line, and (7.4) at the third line.
As a consequence, for all p € M, either i, = M + 1 in which case (7.7) yields

Z eu(y:k) (v k) Z en(yiky—1(7 1 k) = Z em(y:k)=2Ewu,

v:kePZ v:kePg v:kePZ

or € M, and by (7.9), the operator T can be applied a finite number r of times to obtain
T, = M + 1, in which case we recover

Z Cpu(vy:k) 7 k Z Crru(y:k) FY k) 5M7

v:kePg v:kePZ

which completes the proof. (I

7.2.5. Bounding the total mass. As a consequence of Lemma 7.2.5, the local stability estimates
of Proposition 7.2.3 are derived from the following estimation on the total mass of the auxiliary
system.

Lemma 7.2.7 (Estimation on the total mass). Under the assumptions of Proposition 7.2.3, the
total mass of the auxiliary system satisfies

Em < Ly &,
where L1 is defined by (2.9). Besides,
sup  sup en(y:k) <Ly sup eg(y:k),
0<m<M ~:kePd v:kePg
where Lo is defined by (2.9).

The conclusion of Proposition 7.2.3 easily follows from the combination of Lemmas 7.2.5 and 7.2.7
with (7.5).

In order to prove Lemma 7.2.7, let us introduce a few notions and notations. Given a sequence
of particles g = (v : k1,...,7v: k) € (PH)L, with L > 1, and a particle v : k41 € PZ, we denote
by g :: (v : krs1) the sequence (7 : ky,...,v: kry1) € (P)EFL

For all m € {0,..., M} and for all v : k € PZ, we first define the set T, (v : k) of sequences of
particles as follows:

e for all v : k € P2, the set I'y (v : k) contains the single element (v : k),
o forallme {1,...,. M},

Ya:i € ap, r. U {g" = ), g €T _y(a:i)},
@i’ Eam

VB:jE€bm,  Tn(B:i)= |J {¢=(B:4).g €T, 1(B:i)}
B:j’ €bm

Vy ik & am Ubp, Io(v:k)=T,_,(v:k)}

In other words, I', (v : k) contains the set of sequences g = (7 : ko,...,7 : kL), such that there
exists a sequence of collisions (¢, ,- - ., tm ) satisfying:
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® ¢, is the first element of C,.,,
o forallle{l,...,L -1}, ¢, and ¢, , are consecutive elements of C.x,,
o v:kr =:kand ¢y, is the last element of C.,.; with number lower than m.

Note that the sequence of collisions (¢, , - - -, ¢, ) is uniquely determined by the conditions above.

An element g of some set ', (7 : k) shall be called a type path, as it describes an oriented path
in the collision graph with all edges having the same type. For all g € T', (v : k), we denote
F(g) := «v : ko. Besides, for all m’ € {0,...,m}, we define ¢,/ (g) as follows: if there exists
1 €{1,...,L} such that m’ = m, then ¢,,/(g) is the generical cluster of type 7 involved in the
collision ¢,,,; while otherwise, ¢;/(g) = 7 : ki, where [ is the largest index in {0, ..., L} such that
m’ > m; (we take the convention that mo = 0). We finally define the weight of a type path

gel,(v:k) by
T 1

This quantity has the following interpretation: given m € {1,...,M} and v : k € P9, let ¢ be
the last collision in C,.; with number lower than m. Select a particle ~ : &’ uniformly at random
among the particles of type v involved in the collision c. If it exists, call ¢’ the collision preceding
¢ in Cy.7, and move from ¢ to ¢/. This motion is backward with respect to the orientation of the
collision graph. Now repeat the random selection and backward motion as long as possible. Then,
the sequence (v : k,v : k’,...) of selected particles at successive collisions is the reverse of a type
path g € T, (v : k), and its weight w,,(g) is the probability of selecting this path. In particular,
we deduce that, for all m € {0,..., M}, for all v : k € P,

(7.10) Z w, (g) =1.
g€, (v:k)

We now define the history of a type path g € T', (v : k) as follows. In the case m = 0, we let

Ho(y: k)= | (JA{OA ), (¢ : K v k) g Ry | U | UL K),(vi kv k) €R}|;

<y v'>y
in other words, Hy(7 : k) contains all the pairs (0,7’ : k') where v/ : k¥’ is a particle that will never
cross the particle v : k. Now for all m € {1,..., M},
o forall a:i € ap, forallgeT', (a:1),

Hp(g) = Hmfl(gl) U{(m,B:7),8:7 €bm},

where ¢’ € Ug.ireq,, (@ :4') is such that g = ¢’ :: (o 1 4);
e forall g:jeb,, forallgel, (8:}7),

Hp(9) = Hp 1 (Y U{(m,a:i),a:i € an},

where ¢’ € Ug.jrep, I, 1 (B :7') is such that g = ¢’ :: (8 7);
o forall y:k & anUby, thenforallge T, (y:k)=T, _,(v:k),

Hp(g9) = Hm-1(9)-

In other words, H,,(g) records the pairs (m’,7’ : k') such that at the collision ¢,,, the particle
contained in the path g has crossed the particle 7' : &'
The sets H,,(g) have the following properties.

Lemma 7.2.8 (Properties of H,,(g)). Let m € {0,..., M}, v: k€ P¢ and g€ T, (v : k).
(i) For all (m',~' : k') € Hy,(g), we have ' # ~.
(it) For all (m/,~" : k'), (m",v" : k") € Hy(g) such that m' #m”, we have v : k' #~" : k".
(iti) For allm € {1,...,m}, for all c € {am;, b}, if there exists (m',~' : k') € Hy,(g) such that
m' <m and v : k' € ¢, then for all v : k" € ¢, there exists m"” € {0,...,m} such that
m"” <m and (m",v : k") € Hy,(g).
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Despite its seemingly technical formulation, Lemma 7.2.8 is quite intuitive, and instead of de-
tailing its proof, we rather give a formal explanation of each result. Coming back to the MSPD
started at x (or indifferently y), one can associate g = (v : ko,...,7 : kz) with the continuous
path (G(t))i>o starting from ), , then joining the space-time points of collisions Z(x; ¢y, ) and
E(X; ¢my,, ) following the trajectory of the particle v : k;, and such that G(t) = ®] (x;t) for
t > T(X;¢m, )

Then H,,(g) is the set of pairs (m’,4’ : k) such that the particle 4/ : k' have crossed the path
G at the collision ¢,,/, with m' lower than m, or in the virtual past for m’ = 0. The point (i)
is therefore obvious. The point (ii) means that, along the path G, one cannot cross the same
particle twice; since G remains supported by the trajectories of particles of the same type -, this
is a straightforward consequence of Assumption (USH). Finally, the point (iii) expresses the fact
that if two particles of the same type are involved in a collision ¢z such that @ < m, which is not
located along the path G, and at least one of these particles has crossed G (possibly in the virtual
past), then the other one has necessarily crossed G too. This is a consequence of the continuity of
G combined with the properties of the numbering of the collisions.

The proof of Lemma 7.2.7 relies on the intermediary Lemmas 7.2.9 and 7.2.10.

Lemma 7.2.9 (Integration along paths). Under the assumptions of Lemma 7.2.7, for all m €
{0,..., M}, for ally : k € P4,
(7.11)

|HM(.(])‘
S ERD SN (PR3 A OR S R S DI} 3

g€, (v:k) (m/,y":k")EHm(g)
where we take the convention that, for all v' : k' € P4, e_1(y' : k') = 0.

Proof. The proof works by induction on m € {0,..., M}. For m = 0, the inequality is trivial. Now
let m € {1,..., M} such that (7.11) holds true up to m — 1. Then for all v: k & an, U by,

em(y: k) = em1(y: k)

6 [Hpm—1(9)] B 6 . ,
< ¥ (497 wwlarem+S X el
gerrn—l(’y:k) (m/7’7/2k/)EHm71(9)
(,_) |HM(9)| B (__)
= Z (1 + 5) w,,(9) § eo(F(g)) + . Z em—1(v k') 3,
9ET 1 (7:k) (m',y":k")EHm(g)
as I, _(y: k) =T,(y:k)and, for all g € T, _,(v : k), we have H,,_1(9) = H,,(g) and

w,,,_1(g9) = w,,(g9). Now for all «: i € apy,

em(a:i)—<1+%|bm|>i Z em,l(a:i’)_F% Z em-1(8:7)

|am| ! Eam B:jEbm,

o [bon |+ Him—1(g")|
< Z Z (14‘5)

1 _ (C]
X ——W,,_1(9") { eo(F(g")) + . Z em—1(Y 1K)
(m/ " k" YEHm-1(g")

B:j€bm
where we have used the elementary inequality
(7.12) V>0, Vk>1, 14+ kx < (1+2)k

Let us remark that each type path g € T, (« : i) writes ¢’ :: (o : 4) with ¢’ € Unsireqn, Iy (a 2 1'),
and that [Hp(9)] = [Hm-1(9")] + [bml|, wy,(9) = wy,_1(9')/|am|, and F(g) = F(g'). We deduce
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that

X —

w
|am|

)|bm|+Hm1(9')| 1 (g")eo(F(g"))
m-19")€0

D (14—%

! Eam g€l (azi’)

g€, (o)
while, for all v : ¢ € ayy, (7.10) yields

_ _ S}
1= Z wm—l(g/) < Z wm—l(g/) (1 + E
g'er (i) g'er _(a:i’)

) b+ Hom—1(9")]

so that
O\ lomlFHHm 1) 4
=y (147) (o)

i Cam g€l (aui’)

and therefore

O bl HHn )] e o
> > (1 + g) mwmq(g ) > em—1(7" : k)

ai'€am grel, | (a:i’) (m/,y":k')EHm-1(g")

©

+ Z em—1(8:j)
B:j€bm
9\ Hm ) o
< ~ - ~ , AN
< ¥ (1+2) T w2 X et
g€ (ard) (m k") EHm (g)
which completes the proof. (I

Lemma 7.2.10 (The L*° — L! estimate). Under the assumptions of Lemma 7.2.7, we have the
L> — L' estimate: for all m € {0,...,M?}, for all v : k € P4,

n

_ O
(7.13) em(y k) Sexp(O@d—1)4 > ey k) > Lipig—rmywinle) + —Em
k=1 g€l (v:k)
Proof. Let us note that, for all m € {0,..., M}, for all v : k € PZ, the points (i) and (ii) of
Lemma 7.2.8 yield, for all g € T, (v : k),
|Hp(g)| < n(d—1)

and therefore
9 |HM(9)‘
(1 + —) <exp(©(d—1)).
n

Furthermore, we rewrite

Z w,,(9)eo(F(9)) = Z eo(y: k) Z Lir(g)=y:ky Wn (9)-
9ET T (1:k) k=1 g€, (1:k)
We shall now prove that, for all g € T, (v : k),
(7.14) > em—1(Y 1 k') < Enm,
(m/,v":k")EH,(g)

which leads to the expected L>° — L' estimate (7.13) when combined with (7.11).
Let us fix m € {0,...,M}, v : k € P¥ and g € T, (v : k). We first prove by induction on
m € {0,...,m} that

(7.15) Z em—1(Y 1K) < Z em(y k).

(m',v/:k/)EHm(g) (m/,v/:k/)EHm(g)
m'<m m'<m
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The case T = 0 follows from the convention that e_1(7" : k') = 0, see Lemma 7.2.9. Now let
m € {1,..., M} such that the inequality above holds true for ™ — 1. Then

em—1(y 1K) = Z em—1(y k') + Z em—1(y 1 k)

(m',y":k")EHm(9) (m',y":k")EHm(9) (m’,y":k")EHm(9)
m’'<m m’'<m—1 m'=m

< E eﬁfl(’}/ : k/)a
(m',y":k")EHm(g)
m’'<m

and we just have to check that

(7.16) Z em_1(y 1 K') < Z em(y k).

(m' vk ) EHm(g) (m',y":k") € Hm (9)
! ’ —
m' <m m’ <m

To this aim, we note that, for all v : k" € P%:

e either 7' : k' & am U bs, in which case eqz—1(y' : k') = em(y : k),

e or there exists ¢ € {am, b} such that 4/ : k' € ¢, in which case the point (iii) of Lemma 7.2.8
ensures that all the quantities em—1(y" : k"), for 7/ : k” € ¢, appear in the sum at the
left-hand side of the inequality (7.16). But by (7.4),

Z em_1(y 1 k") < Z em(y + K").

~':k" €c vk €c

The inequality (7.16) follows immediately, and the proof of (7.15) is completed. Applying the
latter inequality with 72 = m and using the point (ii) of Lemma 7.2.8, we conclude that

Z 6m/—1(7/ : kl) < Z 6m(7l : kl) < gma

(m’,y":k")EHm (9) (m’,v":k")EHm (9)

and thereby obtain (7.14). O
We are now ready to complete the proof of Lemma, 7.2.7. We first address the L' estimate.

Derivation of the L' estimate in Lemma 7.2.7. We use our L™ — L! estimate (7.13) to obtain a
bound on &£y;. By the definition of the auxiliary system, for all m € {1,..., M},

20 ) .
5m: m71+7 |bm| Z emfl(a:l)+|am| Z emfl(ﬂ:])
ai€am B:jEbm
4072
< (14 2 lanllbnlexp(©(a - 1)) €
20 - , _
+ — exp(O(d — 1))|bm| Z eo(a: i) Z Z L{r(g)=aii} Wp—_1(9)

/=1 a:ii€am g€l (i)

20 -
+——exp(0(d - 1))[am| deBii) Y > pg—piywm1(9),
i=1

B:j€bm geT, _ (B:4)

where we have used (7.13) for the inequality. Using the elementary inequality (7.12) again, we
obtain

4@2 > m=1 lam||bm| 20
Er < (1 + = exp(©(d - 1))> {50 + =2 exp(O(d — 1)(Au + BM)} ,
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where u
AM = Z |bm| Z 60(0& : Z/) Z Z ﬂ{F(g):a:i/}w;@fl(g%
m=1 i/=1 ai€am g€, (i)
By = Z |am] Z «wB:) Y Y Yrg=piWn-1(9)-
m=1 B:i€bm geT', (B:4)
For allm € {1,..., M}, am X by, is a subset of R with cardinality |a.m,||bm|, and for m’ < m, the
subsets @ X by = ¢y and ap, X by, = ¢y, are disjoint. As a consequence, for allm € {1,..., M},
M
. . d(d—1
S omllonl < IR < [l 6 ) € (P s < g = 2401
m=1
therefore

40?2 SNy am (b
(1 + —5exp (O(d - 1))) < exp (20%d(d — 1) exp (O(d — 1))) .
n
It now remains to obtain estimates on the quantities Ay; and Bjys. To this aim, we rewrite
Ay = Z eoa i) o,
i’ €PY

where, for all a : i’ € P2,

Iy = Z |bm| Z Z ]l{F(g):a:i’}w;fl(g)'

ai€am ger, _(c:1)

Let us fix o : i/ € PZ and obtain an estimate on I,.;;. We first note that, for all m € {1,..., M},
for all & : i € a,y, the mapping g — ¢ :: (« : 7) establishes a one-to-one correspondance between

the sets
|| {9, 1(a:i): Flg)=a:i}

at€am

and
fgeTmla:7): Flg)=a:i},
and that, in addition, for all g in the first set above,
_ 1 _
wm(g " (Oé : Z)) |am| Wiy — 1(9)7
so that

> Y rgeainttm @)= Y Lrg—aiylam|w,(9)

@i€am gel' | (i) g€l (i)

Yo Y Lpgmaiywin(9):

Qi€ Am gET (i)

As a consequence, I,.;; rewrites
Iyt = Z |bm| Z Z ]l{F(g):a:i’}w;z(g)'
i€am gel', (ai)

We now define the set I'(a : ') by
= | {geryla:i): Fl@ =a:i'}.
i=1

A type path § = (a : ig,...,a : if) € I(a : 4') is associated with a sequence of collisions
(Crmgy e - cmf) having the property that ¢, is the last element of C.;,. The total weight w(g) :=
w,;(g) of the type path g has the following interpretation: start from the particle o : 7" and move
to the first collision ¢,,, in Cq.; if it exists. This motion is forward with respect to the orientation
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of the collision graph. Now select a particle uniformly at random among the particles of type
« involved in the collision ¢,,,, and repeat the motion forward and random selection as long as
possible. Then w(g) is the probability of selecting the type path g; therefore,

(7.17) > w(g) =1

geT (azi’)

Besides, we have the identity, for all m € {1,..., M}, for all & : i € ap,

_ 1 .
Z Il{F(g):oui/}’wvn(g) = m Z ]l{§€Am}w(g)
m EEF( i’

g€l (i) a:i’)
where Ay, is the set of type paths § = (« : 4o, ..., a : ip), associated with the sequence of collisions
(Cmys-- -+ C€my), such that there exists L € {1,...,L} such that m = my and «a : iy € an,. We

deduce that

M
T = > W@ > |bwl Y lgean < Y, B@Hu@)| <n(d-1),
m=1

§Ef(a:i’) at€am

gel(a:i’)
where we have used (ii) of Lemma 7.2.8 as well as (7.17) in the last inequality. We conclude that
Ay <n(d—1) Z eo(a i) =n(d—1)&
o/ €PZ
and, similarly,
BM S n(d - 1)80
As a consequence,
Enr <& (1+40(d — 1) exp(O(d — 1))) exp (20%d(d — 1) exp (O(d — 1))) ,

which is the L! estimate £y < £1E where £y is given by (2.9). O

Derivation of the L™ estimate in Lemma 7.2.7. Injecting the L! estimate above into (7.13), we
obtain, for all m € {0,..., M}, for all v : k € P,

n

_ ()
em(y: k) <exp(O(d—1)) E eo(y: k) g Lir(g)=y:krwm(9) + Eﬁlgo
k=1 g€l (k)

<exp(O(d—1)) Z w, () +dOLy p sup eo(y : k)
9ET s (:K) ke
=exp(O(d—1)){1+dOL} sup eo(y : k'),
~':k'ePd
thanks to (7.10), whence the L>° estimate

sup  sup en(7:k) < Loo sup eo(y: k)
0<m<M ~:kePd v:kePg

with Lo given by (2.9). O

7.3. From local to global stability estimates. In this subsection, we explain how to remove
Condition (LHM) from Proposition 7.2.3; namely, we prove the following result.

Proposition 7.3.1 (Global stability estimate). Under Assumptions (LC) and (USH), for all
x,y € Dy,
sup (1) — (3 )ls < £alpx — v,

sup |[@(x;1) — 2(y;t)|[oc < Loo|[x = ¥lloo,
t>0

where L1 and Lo, are given in Proposition 7.2.35.
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The subsection is organised as follows. Proposition 7.3.1 is derived from the local stability
estimates of Proposition 7.2.3 by integrating the latter along a continuous path joining arbitrary
initial configurations, that can be decomposed into small portions on which Proposition 7.2.3
applies. Geometrical tools allowing the construction of such a path are introduced in §7.3.2,
and the global interpolation procedure is described in §7.3.3. The whole argument relies on the
nondegeneracy condition (ND) introduced in §7.3.1, and an approximation procedure of degenerate
characteristic fields by nondegenerate ones is detailed in §7.3.4.

7.3.1. The nondegeneracy condition. Let us introduce the following nondegeneracy condition on
the functions \!, ..., A%

(ND) For all x € D, for all v € {1,...,d}, for all k < k in {1,...,n} such that

vy £y, Vkelk,... k}, w;y:k(x) = w;y:&(x),

we have

k
— 1 ~
VkE{E,...,k—l}, m E )\’Y,( E )\V(
- k'=k

=k+1

This condition expresses the fact that two clusters of the same type with no particle between
them cannot have the same velocity. Note that the condition is written for a fixed value of n and
therefore only depends on the finite number of values of A} (x), x € D& and v : k € PZ. We will
use the following consequence of Condition (ND).

Lemma 7.3.2 (Continuity of the composition of clusters). Under Assumptions (C) and (USH),
and Condition (ND), for all x € D2, for all t € (0,t*(x)) such that

Vy: k€ PY, clu) (x;t7) = clu] (x; 1),
there exists n > 0 such that, for all y € Bi(x,n),
Vy: k€ P2, clu) (y; t) = clul(x;¢).

Proof. Let x € D2 and t € (0,t*(x)) satisfying the properties above. Let us first fix t’ € (0,¢)
such that, for all s € [t/,t], for all v : k € P2, clu](x;s) = clu)(x;t); in other words, there is no
self-interaction in the MSPD started at x on the time interval [t/,¢]. We shall denote x’ := ®(x;t').

Let us fix 6 > 0 small enough to ensure that, for all v : k and 7' : k' such that clu](x;t) #

cluz,/ (x;t),
Wseltt],  [@](xss) — 5, ®](x58) + 0] N[0 (x;5) — 6, @, (x5 5) + 0] = 0;

On the other hand, by Lemma A.1.2, one can choose 1’ small enough to ensure that, for all
y € B1(x/,7), then y' € D, R(y’) = R(X’) and t*(y’) > ¢’ —¢. By Lemma 3.2.2 combined with
the flow property of Proposition 3.2.8, these conditions imply that, for all y’ € B1(x’,7’),

Vselthtl, lle@yss—t) -l < |ly = x| <.

We now want to fix 1’ small enough to satisfy the conditions above, and such that, for all v : k € P4
if y’ € B1(x',n'), then clu](y’,t —t') = clu] (x; tl
We first require that i’ < &/n, so that if y’ € By (x', 1), then for all v : k € P2, for all s € [t/, 1],
[0 (y'ss = 1) = ®h(xs8)| < nf|@(y'ss = 1) = D(xs )|l < 0,
and therefore @] (y';s —t') = @Z: (y';s —t') only if clu)(x;t) = clug,,_(x; t).
Let us now fix v : k € P2 If clu) (x;t) = 7 : k, then for all y’ € By(x,7), the assertion above

implies that clu) (y;s —t') = v : k for all s € [t/,]. On the contrary, if clu} (x;t) = : k- - k with
k < k, then the stability condition (3.1) combined with Condition (ND) yield, for all k < k < k,

k
(7.18) e ZX; > 3 Z A (x

=k+1
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and the same inequality holds if one replaces x' with y’ since R(x’) = R(y’). By the same
[ /

arguments as above, we have yg 7 < 2nn’ < 24. Let us write, for all s € [t, ],
s—t'
(y'sis—t) =y + / vp(y'sr)dr,
k k o E

s—t
Uy s —t) =y +/ vE(y'sr)dr.
r=0

Let us fix s € [t',#]. If @) (y;s —t') = @(y';s — '), then clu)(y';s —t') =7 1 k- -k and this

remains the case up to time ¢ —¢'. Otherwise, we have, for all 7 € [0, s — 1], ®}(y';7) < ®L(y';7)

and therefore ) -
dwl(y'sr)=~:k---k, cul(ysir)=vy:k -k,

for some k < k' < E < k. Arguing as in the proof of Lemma 3.1.7, but where the stability
condition (3.1) is replaced with the stronger condition (7.18), we get v} (y';7) > vl (y';7). Since

k' and % can only take a finite number of values, we deduce that there exists § > 0 such that, for
all € [0,s —t'], vl (y';7) — v%(y’; r) > 6. As a consequence, if @] (y';s —t') < fIJ%(y’; s —t') then
we necessarily have

s—t’
O(s —t") S/ (U,Z(y’;r)—vl( )) dr<y— —yV < 2nn'.
r=0 -

By contraposition, we deduce that if we choose ' < 0(t—t")/(2n), then the self-interaction between
the particles v : k and 7 : k in the MSPD started at y’ occurs before the time ¢ — ¢/, which implies
du)(yst—t)=~v:k--k

Taking the minimum of such admissible 7’ on all the particles v : k € PZ, we conclude that,
for all y € DZ such that ®(y;t') € Bi(x',n'), we have clu) (y;t) = clu](x;t), for all v : k € P,‘f.
By Proposition 3.2.9, there exists 7 > 0 such that, for all y € B1(x,7), ®(y;t') € B1(®(x;t'),n');
which completes the proof. (Il

The nondegeneracy condition (ND) implies that the set of good configurations is dense in DZ.

Lemma 7.3.3 (Density of G). Under Assumptions (C) and (USH), and Condition (ND), the set
G is dense in DZ.

The proof of Lemma 7.3.3 is postponed to Subsection A.3 in Appendix A.

7.3.2. Radial blow-up of singularities. Given a configuration x € D? and a good configuration y in
the neighbourhood of x, we now want to construct a path joining x to y that can be decomposed
into small portions on which Proposition 7.2.3 can be applied. To this aim, we call singularity a
space-time point at which a non binary collision, or both a collision and a self-interaction, occur in
the MSPD started at x. Note that a configuration y € D is good if and only there is no singularity
in the MSPD started at y. Then we remark that, if y € G is close enough to x, singularities in the
MSPD started at x are radially blown up in the MSPD started at y, in the sense that if one shrinks
the the trajectory of the MSPD started at y around the singularity, one obtains the trajectory of
the MSPD started at x.

In this paragraph, we first give a proper definition of the notion of locally homothetic configura-
tions x and y corresponding to the description above, then we use the radial blow-up of singularities
property to construct paths joining x to y with the expected properties.

For all space-time points Z = (§, 79) € R x (0, +00), for all é¢ € R, 6, € (0,7), we shall denote
by

a0 .= [50 — 55750 + 6g] X [TO — 05,70 + 6-,—] CRx (O, +OO)
the (d¢, d-)-box around E. The open segments (§o — ¢, {o + d¢) X {70 — -} and (§o — d¢, o + d¢) X
{70 + ¢, } shall be referred to as the horizontal sides of the box.

Definition 7.3.4 (Proper covering of I°’!'(x)). Let x € D, with N(x) > 1. A proper covering of
I°°(x) is a pair (5¢,0,) such that:
° 55 >0, 6, € (0,t*(x)),
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o for all Z,=" € I°°(x) such that = # Z', then the intersection =% N=E"%¢% of the (J¢, d,)-
boxes around Z and Z' is empty,
e for all = = (&, 70) € I°°%(x),
— for all v : k € P¢ such that there exists t € [ro — 8,70 + -] such that ®](x;t) €
[0 — de, o + O¢], then
®Z(X;To) = &o,
i.e. all the particles passing in the box are involved in the collision associated with =,
— for all particles v : k in the boz,

@z(x; T0O — 6-,—) S (fo - 55750 + 6g) and @Z(x; To + 6-,—) S (fo - 65,50 + 55),
i.e. the particle enters and exits the box by the horizontal side; besides,
Yt € [10 — 67, 70), clu) (x;t) = clu) (x; (10 — 67)7)
and
Yt € [10, 70 + 4], clu) (x;t) = clu) (x;79),
i.e. self-interactions in the box can only occur at the space-time point =.
Given a proper covering (J¢, 8, ) of 1°°!(x), the set of (¢, d,)-boxes around the points of I°°!!(x)

is drawn on Figure 3. Examples of boxes around space-time points of collisions, with dimensions
that do not define a proper covering, are shown on Figure 4.

255

—

$ 25,

FIGURE 3. An example of set of (J¢, d,)-boxes around the points of 1°°!!(x).

FIGURE 4. The box on the left-hand figure contains a self-interaction at a distinct
space-time point from the collision. On the central figure, a particle enters the
box by a vertical side. The box on the right-hand figure is crossed by a particle
that is not involved in the collision.

Let us note that a proper covering of 1°°!!(x) always exists. Indeed, since the set I°¢'(x) is
finite, one can construct &, € (0,t*(x)) small enough to ensure that, for all = = (£y, 70) € I°°!(x),
the particles involved in the collision associated with = do not have self-interactions on the time
interval [1g — 0,, 70 + ;] (except possibly at time 7). Besides, since the velocities are bounded
by L¢,c, given a choice of ., any choice of §; such that

(7.19) d¢ > 0-Lc o
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ensures that particles enter and leave the box by the horizontal sides. Finally, one can shrink §,
and keep ¢ satisfying (7.19) accordingly to obtain boxes small enough for being disjoint and not
being crossed by particles not involved in the corresponding collision.

We can now give a definition of locally homothetic configurations.

Definition 7.3.5 (Locally homothetic configurations). Let x € D. A configuration'y € DS is said
to be locally homothetic to x if y € D and either N(x) = N(y) = 0, or R(x) = R(y) and there
exists a proper covering (0¢,d,) of 1°°Y(x) such that, for all 2o = (&,70) € I°°%(x),

e for all v : k € P? such that @ (x;70) = &,

‘Iﬂ(y, 7o — 0-) € (€0 — 0¢, &0 +0¢),  cluj(y;70 — 0r) = clu) (x5 70 — d7),
©i(y; 70 +07) € (€0 = 0,80 +0¢),  clug(y; 7o +6r) = clui(x;70 + 67),
(a

e for all 1,8 :j) € R(x) such that :COHB]( x) = Ey, the space-time point of collision
"Z"?ﬂ J(y) belongs to the (d¢, d-)-box around Ey, and for all p € [0, 1],
(7.20) S (L= p)x+py) = (1= p)Z0 + pEL5,(¥),
o forally e {l,...,d}, for all k, k' € {1,...,n} such that 2 € Ifydkf,y w (X), the intersection

—(0¢,0+)
=00 N (y)

is either empty or contains a unique element E. 4.1 (y); in the latter case, for all p € (0,1],
the intersection

= (5,67)  yse
‘:‘g ¢ ) ﬁI'y:g,'y:k’((l _p)x+py)
contains a unique element = ~.x (1 — p)x + py) and we have
(721) E'y:k,'y:k’ ((1 - p)X + p}’) = (1 - p)EO + pE'y:k,'y:k/ (y)

We shall sometimes precise that y locally homothetic to x with respect to the proper covering
(657 57’)'

Let us remark that if N(x) = 0 then any configuration y € D such that N(y) = 0 is locally
homothetic to x.

Lemma 7.3.6 (Radial blow-up of singularities). Under Assumptions (C) and (USH), and Con-
dition (ND), let x € D.

(i) If N(x) = 0, there exists k > 0 such that, for ally € Bi1(x,k), y € D and N(y) = 0 so
that y is locally homothetic to x.

(i) If N(x) > 1, then for all proper coverings (6;,0¢) of I°°Y(x), there exists k > 0 such that,
for ally € Bi(x,k), y is locally homothetic to y with respect to (6-,0¢).

Proof. The point (i) is a straightforward consequence of (i) in Lemma A.1.2.

The proof of (ii) works by induction on N(x) > 1. Let us fix N > 0 such that the lemma
is satisfied for all x € D such that N(x) < N. Let x € D with N(x) = N + 1; in particular,
t*(x) < +oo. Let (J¢,d,) be a proper covering of 1°°!(x).

Using Lemma A.1.2 again, we first obtain 1 > 0 such that, for all y € By(x,k1), y € D and
R(x) = R(y).

Without loss of generality, let us assume that d, is small enough to satisfy

t=t*(x) + 6, < t*(x) +t*(x*) — &7,

and take J¢ small enough to satisfy (7.19), so that (J¢,d,) remains a proper covering of 1°°!(x).
Then, on the time interval [0, t*(x)+4.], the only collisions in the MSPD started at x occur at time
t*(x), possibly at different locations. Besides, ®(x;t') € D, N(®(x;t')) < N, and if N(®(x;¢')) > 1,
then (J¢, ;) remains a proper covering of 1°°!(®(x;#')). As a consequence, there exists £’ > 0 such
that, for all y’ € B1(®(x;t'), '), then y’ is locally homothetic to ®(x;#') (with respect to (¢, d,)
if N(®(x;t')) > 1). By Proposition 3.2.9, there exists ko > 0 such that, for all y € Bj(x, k2),
O(y;t') € B1(®(x;t), K').

Combining Proposition 3.2.9 and Lemma A.1.2, we obtain k3 > 0 such that, for all y €
Bi(x, k3),
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o O(y;t*(x) — d;) € D and R(P(y;t*(x) — d,)) = R(P(x;t*(x) — d,)),
o O(y;t*(x) +d;) € D and R(P(y; t*(x) + d,)) = R(P(x;t*(x) + 4,)),
and, for all v : k € P2,
e if the particle «y : k is involved in a collision at the space-time point (&g, t*(x)) in the MSPD
started at x, then for all ¢ € [t*(x) — d,,t*(x) + -], P} (y;t) € (S0 — ¢, &o + I¢),
e if the particle v : k is not involved in a collision at time ¢*(x) in the MSPD started at x,
then in the MSPD started at y, the particle 7 : k does not cross any of the (¢, d,)-boxes
around points of 1°°!'(x) on the time interval [0,#'].
These conditions ensure that, for all particles v : k involved in a collision at time ¢*(x) in the MSPD
started at x, the corresponding particle enters and exits the (J¢, §, )-box around (@} (x; t*(x)), t*(x))
by horizontal sides in the MSPD started at y; besides, all the collision and self-interaction space-
time points in which it is involved remain in the box.

Combining Proposition 3.2.9, Lemma A.1.2 and Lemma 7.3.2, we finally construct x4 > 0 such
that, for all y € Bi(x, K4), for all y : k € P2,

clu) (y; t*(x) — 6;) = clu] (x; ¢ (x) — 6-), clu) (y; t*(x) + 6;) = clu] (x;t*(x) + 6-).
Note that, on account of Condition (ND), Lemma 7.3.2 can be applied since the fact that (¢, d-)
is a proper covering of I°°!!(x) implies that, on the time interval (+*(x),t*(x) + &,], there is no
self-interaction in the MSPD started at x.

We can now define x := min{ki,...,k4} and fix y € Bi(x,k) and p € [0,1]. To complete
the proof, we have to check that the homothetic relations (7.20) and (7.21) are satisfied for all
S0 = (&,70) € I°(x). We address the cases 79 = t*(x) and 79 > t*(x) separately, and shall
proceed in three steps. In Step 1, we prove that

B((1— p)x+ pyi £°(%) = 8) = (1= p)Bx; (%) — 6,) + pB(y; 1" () — 6.
In Step 2, we establish the homothetic relations (7.20) and (7.21) for 7o = t*(x), and we check that
(7.22) B((1— px+ pyi £°(%) + 8) = (1= p)B(x; (%) + 6,) + pB(y; (%) + ).

Finally, we apply an inductive argument to address the case 79 > ¢*(x) in Step 3.

Step 1. Since t*(y) > t*(x) — 0r, then for all t € [0,t"(x) — 6], ®(x;1) = B[A(x)](x;t) and
®(y;t) = ®[A(y)](y;t). Besides, R(x) = R(y) so that A(x) = A(y). Let v : k € P% and let us
denote
c:= clu)(x;t*(x) — d;) = clu) (y; t*(x) — 67).
Note that ||x — ((1 — p)x + py)||1 = p||x — y||1 < K4, therefore ¢ = clu) ((1 — p)x + py; t*(x) — d-).
Let us now remark that the processes {®](x;t) : v : k € ¢}, {®/(y;t) : v : k € ¢} and
{@)((1 = p)x+ py;t) : v : k € ¢} follow the Local Sticky Particle Dynamics on [0, t*(x) — d,], with
the same initial velocity vector. As a consequence, the centre of masses
1 1 1
— Q) (xt), — Q) (y;t), — Q)((1 - it
|C| Z k(X, )a |C| Z k(ya )7 |C| Z k(( p)x+pY7 )a
vy:k€c vy:k€c vy:k€c
travel at the same constant velocity
1 7
H Z A (x)
v:k€c
on [0,t*(x) — 0,]. Thus,

% Z Q) ((1— p)x+ py; t*(x) — d;) = % Z ((1 — p)xy + pyl + (7 (x) — 57)5‘Z(X))
yikee v:k€c

1 . 1 X
=(1- P)H Z D) (x;t"(x) — 07) +PH Z P} (y;t"(x) — 0r),
v:k€c v:k€c
which of courses rewrites, for all v : k € c,
D) (1= p)x+ py; t*(x) — ;) = (1 — p) @} (x; 8" (x) — 67) + p®@) (y; " (x) — 6-)
and completes Step 1.
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Step 2. Let v : k € P2 If the particle v : k does not collide with a particle of another type between
times t*(x) — §, and t*(x) + 6, =: ¢’ in the MSPD started at x (or equivalently y or (1 —p)x+1Yy),
then the same arguments as in Step 1 using the Local Sticky Particle Dynamics ensure that

OI((1—p)x+py;t') = (1= p)@)(x;t') + p®@) (y;t').
Otherwise, there exists a unique space-time point
o € {29, (%) : (a:i,B:7) € R(x), 705 (%) € [t*(x) — 0, t7(x) + 6.},

—a:i,B:5 a:i,B:]

such that all the collisions with particles of another type and all the self-interactions of the particle
v : k between times t*(x) — ¢, and t*(x) 4 ¢, in the MSPD started at x occur at the space-time
point =y. By the definition of k, the particle v : k collides with the same particles of another
type and have the same self-interactions in the MSPD started at y, and the corresponding space-
time points of collisions and self-interactions belong to the (¢, d,)-box around Zy; but of course,
they can be distinct. Let us denote by Z(1),...,Z(z) the sequence of these distinct space-time
points of collisions and self-interactions, ranked by the increasing order of the times of collisions
or self-interactions. For all I € {1,..., L}, we write Z(;y = (§u), 7)), so that

t*(x) -0, < Ty < <7 < t*(x) + 0.
For all I € {1,..., L}, we finally denote by S; ;11 the space-time segment connecting Z;) to Z(4.1),
and let Sp ;1 refer to the space-time segment connecting (®/(y; t*(x) — 6-),t*(x) — 67) to Z(y), and

Spr,z+1 refer to the space-time segment connecting Z(,) to (®](y:t*(x) + d7),t*(x) + 0-).
We now define, for all l € {1,..., L},
2w = €y 71) = (1= p)=Zo + p=q),
and similarly denote by Sy, the space-time segment connecting E’(l) to Ezl +1) While Sp 1 refers
to the space-time segment connecting ((1 — p)®} (x; t*(x) — ;) + p®@) (y; t*(x) — 0;), t*(x) — d;) to
E(1y and ST 1, refers to the space-time segment connecting Z/;, to ((1 - p)PL(x;t*(x) + 0-) +
p®; (y: t*(x) + 07),t"(x) + 6-).

By the Intercept Theorem, if p € (0, 1], then for alll € {0, ..., L}, the segments S ;41 and S]
are parallel. As a consequence, if p € (0,1], then the process ®; defined on [t*(x) — &,,t*(x) + J,]
by

Vi€ {0,...,L}, St = {(@7 (1), 0),t € [Ty, T(41))}
(where 7(,) = t*(x) = 07, 7(; ) := t"(x) + &), has the same slope as the process @/ (y;-) on
each corresponding linear part, see Figure 5. Besides, if two particles v : k and v : k' are in the
same cluster on some linear part in the MSPD started at y, then it is clear that the corresponding
trajectories @Q, <I>Q/ coincide on the corresponding linear part.

t*(x) + 4~

FIGURE 5. The trajectory of the MSPD started at x is plotted on the left-hand
side of the figure, while the trajectory of the MSPD started at y is plotted on the
right-hand side. The trajectory of the process @' is plotted in dashed lines. Each
linear part is parallel to the corresponding part in the trajectory of the MSPD
started at y. The black lines represent the horizontal sides of the box.
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As a conclusion, the processes @} (t — (t*(x) — d;)), t € [t*(x) — 6-,t*(x) + &;), for all v : k such
that
(@] (), £* (%)) = S,
exactly describe the motion of the particles in the MSPD started at (1 — p)®(x;t*(x) — d;) +
p)®(y;t*(x) — d;). Thanks to Step 1, we conclude that

Vi [ (x) — . °(x) + 0], B0 = B1((1— p)x + pyi),

which yields (7.20), (7.21) for all the collision and self-interaction space-time points for the particle
~ : k on the time interval [0, ¢']; besides,

U((1 = p)x+py:t') = €1 (") = (1 = p) @} (x:t") + p@ (y; ')
This completes the proof of Step 2.

Step 3. Let (a:4,5:7) € R(P(y;t')) = R(P(x;t')), so that

Toczc:)il,lﬁ:j (X>a Tacz?il,lﬁ:j (Y)v Toczoll,lﬁj((l - p)X + py) > t'.

Then, by the flow property of the MSPD,
e (L= p)x 4 py) = €505 (2((1 = p)x + py; )
= &gy (1= p)@05 1) + p2(y;t)))
= (1= )t (Dx; ) + pESoi 55 (2(y3 1)),
where we used Step 2 at the second line and the fact that ®(y;t') € By (®(x;t'), ') at the third
line. Using the flow property for the MSPD again, we conclude that the right-hand side above
rewrites (1 —p)€<l . (x)+pell . (y). The very same arguments allow to address self-interactions

a:i,B:7 a:i,B:7
as well, and also yield

Toonpis (L= p)x + py) = 78005, (2((1 = p)x + py;t)) =1
= (1= p) (75505, (@0 1) = ') + p (755015, (D(ys ) — 1)
= (1= p)7esila (%) + P78 5,5 (¥)
which completes the proof. (Il

We now explain how to construct a path joining a configuration x to a good configuration y
close to x, along which pairs of configurations satisfy the Local Homeomorphic Condition (LHM).
For the sake of understandability, we first describe the case x € G in Lemma 7.3.7 below. Then,
the situation is actually very simple as, for y close enough to x, the locally homothetic property
implies that y € G and x,y satisfy Condition (LHM). The case of an arbitrary configuration x € D
is addressed in Lemma 7.3.8.

Lemma 7.3.7 (Construction of locally homeomorphic configurations, good case). Under the as-
sumptions of Lemma 7.5.6, let x € G, and if N(x) > 1, let (6¢,8;) be a proper covering of I°°(x).
Let k > 0 be given by Lemma 7.5.6. For all y € Bi(x, k), the configuration y belongs to the set G
and the configurations x and 'y satisfy Condition (LHM).

Proof. If N(x) = 0, then there is nothing to prove. Let us assume that N(x) > 1, let (d¢,d,) be a
proper covering of I°®(x) and let x > 0 be given by Lemma 7.3.6, so that y is locally homothetic
to x with respect to (d¢,d-). In particular, R(x) = R(y) and if (a:¢,8:7),(¢/ : 7,8 : j') € R(y)
are such that

—_

Ehp (¥) = E0% gy (),

then it necessarily holds

=eoll =coll
S, p: (%) = EQrir g (%)

Since x € G, this implies that y € G. Besides, on account of the definitions of proper coverings and
good configurations, in the MSPD started at x, there is no self-interaction in the (J¢, . )-boxes
around space-time points of collisions. Since the clusters at entry and exit of these boxes have the
same composition in the MSPD started at y, we deduce that self-interactions are separated from
collisions in the MSPD started at y. As a consequence, y € G.



68 Benjamin Jourdain and Julien Reygner

We have already checked that x and y satisfy Condition (LHM-1). Condition (LHM-2), which
asserts that x and y have the same collision graph, is an easy consequence of the equality of clusters
at entry and exit of boxes. Now if two collisions ¢’ and ¢ are such that ¢/ % ¢, then the fact that

(2(x;¢))%0 N (B(x;¢0))°%0 =0, Z(y;¢) € (BE(x;¢)% %, Z(y;c) € (2(x;c))%0r,
implies that
TH) =T (x;¢) VT (y;¢) < T(x;¢) + 6, < T(x;¢) — 6, < T(x;¢) AT (y;¢) =T (c),

which yields Condition (LHM-3a). Finally, Condition (LHM-3b) is also a consequence of the
identity of the compositions of of clusters at entry and exit of boxes. O

When x is not a good configuration, one can obviously not expect Condition (LHM) to hold for
x and y chosen as in Lemma 7.3.7. As is plotted on Figure 6, singularities can lead this condition
to fail even for the locally homothetic good configurations y and (1 — p)x + py when p is too far
from 1. However, based on the radial blow-up of singularities property described in §7.3.2, we prove
in Lemma 7.3.8 below that, for p. < 1 with p, close to 1, y and (1 — p.)x + p.y actually satisfy
the Local Homeomorphic Condition (LHM). Iterating the argument starting from (1 — p,)x + p.y
instead of y, we obtain that the geometric sequence (p7*)m>0 has the property that, for all m > 1,
the configurations (1 — p™~1)x + p™ 1y and (1 — p")x + p™y satisfy Condition (LHM).

FIGURE 6. The configurations y and y’ := (1 — p)x + py are both good config-
urations and they are locally homothetic to x. In their collision graph, ¢; — co;
however, for the choice of p on the figure, T'(y’;¢1) > T(y;¢2), therefore Condi-
tion (LHM-3a) is not satisfied by the pair y,y’.

Lemma 7.3.8 (Construction of locally homeomorphic configurations, bad case). Under the as-
sumptions of Lemma 7.5.6, let x € D, and if N(x) > 1, let (0¢,d,) be a proper covering of I°°!(x).
Let k > 0 be given by Lemma 7.3.6. For all'y € Bi(x,k) NG, there exists p. € (0,1) such that, for
all m > 1, the configurations (1 —p" Yy +pm " 1x and (1 — p™)y + px satisfy Condition (LHM).

Proof. Lety € B1(x,k)NG. Forall p € (0, 1], it follows from Lemma 7.3.6 that the collisions locally
look alike in the MSPD started at y and at (1 — p)x + py. This implies that (1 — p)x + py € G;
and, for all p,p’ € (0,1], R((1 — p)x+py) = R((1 — p')x+ p'y) and (1 — p)x+ py, (1 —p')x+p'y
have the same collision graph, so that they satisfy Conditions (LHM-1) and (LHM-2).

Let us now explain how to construct p. € (0,1) in such a way that, for all m > 1, the configu-
rations (1 — p7 Yy + p" !x and (1 — p™)y + px satisfy Conditions (LHM-3a) and (LHM-3b).
Let us denote C' := C(y). For all ¢ € C, it follows from Lemma 7.3.6 that there exists a space-time
point Z(c) such that

Vpe (0,1,  E((1—p)x+py;c) = (1 —p)=o(c) + p=(y;0),
and in particular, the collision times satisfy

Vpe (0,1,  T((1-p)x+py;c)=(1—p)To(c) + pT(y;c),
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where we denote Zg(¢) = (£o(c), To(c)). Therefore, for all p € (0,1], (1 — p)x + py and y satisfy
Condition (LHM-3a) as soon as, for all ¢/, ¢ € C' such that ¢’ e,
(1= p)To (') + pT'(y; ) V T(y; ') < ((1 = p)To(c) + pT(y;¢)) AT (y30),

which is always the case if Zg(¢’) # Ep(¢) and reduces to

To(c) — T(y;¢)

To(c) = T(y;¢)
if Zg(¢’) = Zo(c) and either T(y;¢') < T'(y;¢) < To(c) or To(c) < T(y;¢’) < T(y;c). We denote
by p«1 the infimum of the set of p € (0,1) satisfying these conditions; then, for all p > p. 1,
(1 — p)x + py and y satisfy Condition (LHM-3a). Very similar arguments combined with the fact
that y € G allow us to construct p, 2 € (0,1) such that, for all p > p. 2, (1 —p)x+ py and y satisfy
Condition (LHM-3b).

As a conclusion, let us define p, to be any number such that
P 1V pso < pie < 1.
Then we have proved that the pair of configurations y and (1—p.)x+ p.y satifies Condition (LHM).
To complete the proof, we apply the same arguments starting from (1 — p,)x + p.y instead of y.
We obtain that, for all p € (0, 1], the configurations
(L=p)x+p((1 = p)x+p.y) =1 —ppo)x+ppsy  and (1= p)x+puy
satisfy Condition (LHM-1) and (LHM-2). Besides, Condition (LHM-3a) holds as soon as
To(c) = T((1 = pe)x + payic) _ To(c) = T(ysc)
To(e) = T((1 = p)x + puy; ) To(e) = T(y;¢)
for all ¢, ¢ € C((1 — p.)x + p.y) = C(y) such that ¢/ = ¢, Zo(¢’) = Zo(c) and either
T((1 = p)x+pey;¢) <T((1 = po)x+ pay;c) < To(c),
which reduces to T'(y;¢') < T'(y;¢) < To(c), or
To(c) < T((1 = p)x + pay; ) < T((1 = ps)x + pay;c),

which reduces to Tp(c) < T(y;¢’) < T'(y;c). As a consequence, the conditions on p are the
same as above and taking the infimum over the admissible values of p yields the same quantity
p«1. Likewise, to ensure that (1 — p?)x + p?y and (1 — p.)x + p.y satisfy Condition (LHM-3b),
we obtain the same quantity p. 2 as above, therefore taking p = p,. again, we conclude that the
configurations (1—p2)x+pZy and (1 — p,)x+ p.y satisfy Condition (LHM). The proof is completed
by induction. (I

7.3.3. Interpolation procedure. In this paragraph, we describe the interpolation procedure allowing
to derive global stability estimates from the local stability estimates of Proposition 7.2.3, under
Condition (ND). The latter condition is removed in the next subsection.

Lemma 7.3.9 (Global stability estimate under Condition (ND)). Under Assumptions (LC) and
(USH), and Condition (ND), for all x,y € D2,

sup [0(xit) — B(y: )l < L~ v,
sup [0(x:1) — By )]l < Locllx = Y]l
t>0

where L1 and Lo, are given in Proposition 7.2.35.

Proof. Let us begin by mentioning that the arguments of the proof do not depend on the choice
of the distance; in particular, continuity and density results are valid whatever the choice of the
distance since these distances are equivalent. Therefore, the notation || - || shall indifferently refer
to || ||l1 or || - ||eo- The corresponding stability constant shall simply be denoted L.

We first recall that D is dense in D? and, by Proposition 3.2.9, for all ¢+ > 0, the mapping
(x,y) = ||®(x;t) — ®(y;t)|| is continuous on (DZ)2. As a consequence, it suffices to prove that,
for all t > 0, for all (x,y) € D?, ||®(x;t) — ®(y;t)|| < L|]x — vyl
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We fix x,y € D and proceed by interpolation as follows. In Step 1, we split the segment

(7.23) S:={(1-s)x+sy,se[0,1]}

into a finite number of segments

(7.24) Sk :={(1 — s)x+ sy,s € [sg, sk+1]}, ke{0,...,K},

where 0 =: s9 < 81 < -+ < Sg < Sky1 := 1 are such that, for all k € {0,..., K}, for all

s € (Sk,8k+1), (1 —s)x+ sy € D. In Step 2, for all k € {0,..., K} and € > 0 small enough, we
define the segment S}, by

(7.25) Spi={(1 —s)x+sy,s € [sk+ € Skt1 — €]},

and construct a piecewise linear and continuous path joining the extreme points of S}, with length
arbitrarily close to the length of Si, and allowing to apply Lemma 7.3.8 on a finite number of linear
parts of the path in Step 3. We let € vanish and complete the interpolation procedure in Step 4.

Step 1. Let S be defined by (7.23). For all s € [0,1], (1 — s)x + sy € D if and only if there exists
(a:i,B:7) € (P%)? such that a < 8 and
(1= s)af + sy = (1= s)a] + sy,
which rewrites
B B a

5(33]‘ _33?4'9?_9?):33]‘ — T,

where we recall that x

" x$ # 0 since x € D. As a consequence, either xf —xd +yd — yjﬁ # 0 in

J
which case there is at most one solution s € [0, 1] to the equation above, or :Cf -z — yf =0
in which case there is no solution. We deduce that there is a finite number K > 0 of points
s € [0,1] such that (1 — s)x + sy &€ D and we index these points by their increasing ordering:
0 < s < -+ < sg < 1. For the convenience of notation in the sequel of the proof, we define
S0 :=0and sky1 := 1, so that for all k € {0,..., K}, for all s € (sg, Sk+1), (1 —s)x+ sy € D. We
finally define the segments (Sk)o<r<x as in (7.24).

Step 2. In this step we fix k € {0,..., K} and € > 0 such that si + € < sgp+1 — €. Then, the segment
S5, defined by (7.25) is a compact subset of D. Its length is worth

(1 = (ske1 — €)X+ (sp41 — €y — (1 — (sk 4+ €))x — (5x + OY|| = (k11 — sk — 26)||x — y]].

Let us write

St € | Bi(z,k(2)),

zE Sy,
where, for all z € S§, we fix a proper covering of I°°(z) if N(z) > 1 and let x(z) be given by
Lemma 7.3.6. Let us extract a finite subcover Bi(z1, k(21)), ..., B1(zL, k(zL)) of S§ where, for all
le{l,...,L}, z, € S5, writes (1 —oy)x+ o1y with s + ¢ <01 < -+ < op < sg41 —e. We also

define o¢ := sk + €, op41 := Sgt1 — € and zg := (1 — 00)x + 0oy, 2141 := (1 — op41)X + oL41Y-
Note that, for all i € {0,..., L}, the intersection of Bi(z;, k(2z;)) and B1(2i4+1, £(2z;+1)) is nonempty
and contains the set
{(1—s)x+sy,s € (o1 + K(z), 0111 — K(2z111))}-
We finally fix 7 > 0 and use the density of the set G (see Lemma 7.3.3) to construct

Zo1s-- 520041 €9
such that, for all I € {0,..., L}, ), ,, € Bi(z,x(z1)) N B1(2i41, 5(2z1+1)), and in addition,
L
S 1ot — 2l + 12 s — 2zl < (w41 — 51— 26)lx— 1l + 7.
1=0

The quantities introduced in Step 2 are summarised on Figure 7.

Step 3. As a continuation of Step 2, let us fix [ € {0,...,L}. We now prove
Sup || (z5t) — (2423 I < Lllz — 24,
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FIGURE 7. The segment Sj is drawn in dashed line, while the segment S} is
drawn in solid line. Gray circles stand for the open balls By (z;, x(z;)). The points
Zg1,---,%7, 41 are chosen in the dense set G in order to ensure that the difference
between the length of the red path and the length (sg41 — sk — 2¢)||x — y|| of S§
be smaller than 7.

and similar arguments shall also yield
Sup [|B(zi41;¢) — (2415 t)I] < Ll|Z141 — 2] 44 ]-
By Step 2, z; € D and 7}, , € B1(z, £(2z))NG. As a consequence, Lemma 7.3.8 implies that there

exists p. € (0,1) such that, for all m > 1, (1 — pI" )z + p* 'z, and (1 — pP")zy + pl'z) ;4
satisfy Condition (LHM). Therefore, for all m > 1, Proposition 7.2.3 yields, for all ¢ > 0,

N@((1 = Pz + pi2 g 45t) — D((1 — Pz + p Pz s I < LT = o)z — 20441
We finally deduce from the triangle inequality that, for all M > 1,

1@((1 = p2)z + ' 24415 1) — (20,4405 0)
M
< Z |@((1 = piM)ze + pi'z s3t) — (1= Pz + " Hzg g3 1)

= Pz — 2|l = L0 = p2") |z — 2,44l

3Fﬂ§|

and use Proposmon 3.2.9 to conclude that

sup [|®(z1;t) — (24413 t)|] < Ll|ze — 254411

Step 4. We finally complete the interpolation procedure described in the introduction of the proof.
First, it follows from Step 3 that

Sup [|B(20; 1) — D(zr1151)]] <ZSl>1p 19(z1:t) — (2] 14138l + [[9(2] 14138) — D(zir158)]])

L

< EZ ||z — Zg,l+1|| + ||Zg,z+1 —Zi41]|
1=0

< L((sk41 — sk —26)|[x =yl + ).

Recalling that zg = (1 — (s + €))x + (s + €)y and zp4+1 = (1 — (Sp+1 — €))x + (Sk+1 — €)y, and
letting 7 vanish, we obtain

SUp [|B((1 = (sx+))xt (s +€)y; ) = (1= (sk41 = )xH (sk41 = Iys D] < Llsk41 =8 —26)[x =yl

Taking the limit of both sides when e vanishes and using Proposition 3.2.9, we finally write

sup [|2((1 — sp)x + sky;t) — (1 — spt1)x + se1y5 )| < Lsk41 — su)l|x — |
>0

and complete the proof thanks to the triangle inequality again. O
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7.3.4. Approximation of degenerate characteristic fields. We now complete the proof of Proposi-
tion 7.3.1 by removing Condition (ND) from the statement of Lemma 7.3.9. We use the following
approximation argument.

Lemma 7.3.10 (Nondegenerate approximation of degenerate characteristic fields). Let us assume
that the function X = (\',...,\%) satisfies Assumptions (USH) and (LC). Then, for all n > 1,
there exists a sequence of functions Ald = (Al Ny g > 1, satisfying Assumptions (USH)
and (LC) as well as Condition (ND), such that, when q grows to infinity:

(i) for all x € DY, for all v : k € PY, (S\[q])Z(x) converges to :\Z(X),
(i) for all v € {1,...,d}, supye(o1ye MY (w)| converges to SUPyepo,12 [A7(w)], the Lipschitz

continuity constant LE% of Ald] converges to the Lipschitz continuity constant Lyc of A
[a]

and the uniform strict hyperbolicity constant Ly
hyperbolicity constant Luysu of A,

(iii) for all x € DY, for all t > 0, the configuration ®9(x;t) at time t of the MSPD started at
x with velocity vectors determined by Ald] converges to the configuration ®(x;t) at time t
of the MSPD started at x with velocity vectors determined by X.

of Ald converges to the uniform strict

The conclusion of the proof of Proposition 7.3.1 is now straightforward: applying Lemma 7.3.9
to the MSPD with velocity vectors determined by )\[‘I], we obtain, for all x,y € D% and for all
t>0,

1919 (x; 1) — @19 (y: )11 < £17]x = 1,

1219 (x; t) — 9 (y; )] | oo < LI — ¥]]oo,

where the meaning of Eq] and EOO is obvious. Since these stability constants are continuous

functions of LE% and L@SH, there is no difficulty in taking the limit when ¢ grows to infinity of
both inequalities and thus obtaining Proposition 7.3.1.

Proof of Lemma 7.3.10. The proof is decomposed into two independent parts: in the first part, we
construct a particular sequence of functions A% satisfying Condition (ND) as well as the points (i)
and (ii). In the second part, we prove that any sequence of functions Al satisfying the points (i)
and (ii) necessarily satisfies the point (iii).

Construction of Al Let us fix x € Pl ye{l,...,d} and k < k in {1,...,n}, such that

vy #v, Vkelk,..., k}, wz/k(x) = w?yjk(x).
Then, for all k € {k,...,k — 1}, for all € > 0, we have

=PI

k' /n
ey {)\7( wh (), ...,w::;c,l(x),w,w;ng,l(x),...,w,‘f:k,(x)) —ew}dw

k/n
n —
T h k1l / . (w},;k(X),...,wzzkl(x),w,wml(x),...,wzzk(x)) _6w} dw
k
! 5 € K= (k—1)°
= )\ R . A
bkl Z:: S22 k—k+1
1 b .
= X, Skt k—1
k E+1k§ o) = gk k=),

k k' /n
_L Z n/i {)\7 (w,lyck,(x),...,w,j;c/l( ), w wzz,l(x) ...,wf‘f:k,(x)) —ew} dw
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If
1 k
7§:W - E: 7Y
k—E—Flk/:k)\l(X)#E—k A (3);

then for e small enough, we still have

k 1 k

1 - € - _
s ¥ _ & _ _ ¥ _ &
T E AL (x) 2n(k+& 1)75E_k E AL (%) (k+k).

k'=k k' =k+1
On the contrary, if
1 k 1 &
- E : Y - - E : Y
k'=k k'=k+1

then the fact that k — 1 # k ensures that we still have
IR ¢ (R
N, (x)— —(k+k—1)# —— A
YN - k- A —— >

k—k+1 =t 2n —k 5

€ —
— —(k+k).

5, (k + k)

For all 4/ # ~, w;ylk(x) can only take the values 0,1/n,...,1 when x varies in P¢. Taking
the minimum of all admissible € for all these possible values, and all the possible choices of v €
{1,...,d} and k < k < k in {1,...,n}, we obtain €y > 0 such that, for all ¢ > 1, the function
Al = (At Aldld) defined by, for all y € {1,...,d},

vu € [0,1]4, A9 (1) == AV (u) — Our
q

satisfies Condition (ND) and the point (i). Up to decreasing €y again, it is easy to prove that the

functions A% also satisfy Assumptions (USH) and (LC), and that the associated constants satisfy
the point (ii).

Proof of (iii). Let Al = (At Alahd) g > 1) be a sequence of functions satisfying Assump-
tions (USH) and (L.C), Condition (ND) as well as the points (i) and (ii). Let ®l? denote the MSPD
flow associated with the velocity vectors determined by A%, We prove by induction on N(x) that,
for all x € D2,

7.26 Vvt >0 lim ®l(x;t) = d(x;1).

(7.26) >0, lim 9ll(x0) = a(x )

If N(x) = 0, then we have, for all t > 0, ®ld(x;t) = <I>[)\[q] (x)](x;t), which converges to
B[A(x)](x;t) = P(x;t) on account of Lemma 3.2.2 combined with the point (i). Now let N > 0
such that (7.26) holds for all x € D¢ such that N(x) < N. Let us fix x € DZ such that N(x) = N+1,
and T > 0. For all ¢ > 1, ®[?(x;0) = x and the process (®!9(x;t));c(o,7) is Lipschitz continuous
in D2, and by (ii), its Lipschitz norm is uniformly bounded with respect to q. As a consequence,
it follows from the Arzela-Ascoli Theorem that, along a subsequence that we still index by ¢ for
convenience, (®[?(x;t)),c(0,7] converges uniformly to a continuous process (¢(t));e(0,7] in D2. The
point (iii) follows if we identify this limit with (®(x;1))c[0,77-

In this purpose, let us note that the sequence

{((Tgc:)il,lﬁ:j)[q] (x) A T)(a:i,B:j)eR(x) iqg>1}

is bounded in [0, —|—oo)N(x), and therefore, up to extracting a further subsequence, we may assume
that, for all (a:14,8:j) € R(x),

lim (r80 (%) AT = Faui gy € (0,7,

q—)-‘rOO «lt,Pr]

where the fact that 7o 8.5 > 0 follows from Lemma 3.2.10 and the point (ii). As a consequence,
t*ld(x) AT converges to

Ti=min{Taip;: (@:4,6:7) € R(x)} € (0,T].



74 Benjamin Jourdain and Julien Reygner

We first remark that, since (®l9(x; t))tefo,r) converges uniformly to (©(t))¢cjo,7], then we have,
for all (o : 4,5 : j) € R(x) such that 7o 5.5 < T,
(7.27) Pazi(Tasi,p:5) = i (Tani,p5)-
We now fix 0 < n < 7. Then, there exists gy > 1 such that, for all ¢ > qo, we have t*19 (x) >7T—n/2,

and then, for all ¢ € [0,7—7], 819 (x; ) = B[A (x)](x; £) converges to B[A()](x; ) (t) thanks to
Lemma 3.2.2 and the point (i) again. Besides, by Lemma 3.2.10, we have, for all ( B:J) € R(x),
for all t € [0,7 — 7],

SN (x 1) — BEAR)] (i) = =——,

so that t*(x) > 7 — 7 and therefore, for all t € [0,7 — 7], ®[A(x)](x;t) = ®(x;). Letting 7 vanish,
we deduce that:
e for all t € [0,7), p(t) = (x;1),
o t*(x)>T.
Since both ¢ and the MSPD are continuous, we also have o(T) = ®(x;7). If 7 = T, then we have
proved that
te0,T lim @l (x;t) = ®(x;t).
vee[oI],  lim OM(x;t) = O(x;t)

Otherwise, there exists (o : 4,5 : j) € R(x) such that To.;5.; < T, and applying (7.27) to any
pair (o : 4,0 : j) such that 7o 8., = 7, we first obtain 7 = t*(x). For all ¢t € (¢*(x),T], we now
write

1219 (x; 1) — @(x; 1)1 = |21 (19 (x; 7 (x)); £ — £ (x)) — D(R(x; " (x)); ¢ — ¢* (%)) ]y
< |1 @1 (x; ¢ (x));t — 7 (x)) — @@ (x; " (x)); ¢ — t* (%)) s
+ 1R (@(xs 7 (x)): ¢ — t7(x)) = D(R(x; (%)) t — ¥ (%) .
On the one hand, N(®(x;t*(x))) < N, and therefore
lim Bl (D (x; £ (3)); £ — £ (x)) = B(D(o; £°(x))s £ — ().

q—+0o0
On the other hand, A% satisfies Condition (ND), so that Lemma 7.3.9 yields
[ @1 (@l (x; £ (x)); £ — 7 (x)) — DI (@(x; £ ()5 — £*(x)) ||y < L] @1 (x; £ (x)) — D(x; £ () 1.
By the first part of the argument, ®!9(x;t*(x)) converges to ®(x;t*(x)), while by the point (ii),
the value of L[f] is uniformly bounded with respect to g. As a conclusion,

lim ||®(x;t) — ®(x;t)||1 =0,

g—>-+oo

so that ®[9)(x;t) converges to ®(x;t), for all t € [0, T]. Since T is arbitrary, the proof is completed.
O

7.4. Proof of Theorem 2.5.2. Theorem 2.5.2 is finally obtained by interpolating the L' and L>
estimates of Proposition 7.3.1 thanks to the Riesz-Thorin Theorem.

Proof of Theorem 2.5.2. Let us fix x,y € DZ and s,t > 0. Then, for all p € [1, +0o0],

12(x;5) = @(y; D)llp < [|P(x;8) = D(y;8)[lp + [|D(y58) = P(y; )],
and by (3.9-3.10), for all p € [1,400),
/ r)dr

[2(y;s) = 2(y;t)lloe < [t = 8|Lc oo
It now remains to prove that
12(x;5) — @(y;9)[lp < Lpllx —yllp,
for some £, that depends neither on n nor on s. By Proposition 7.3.1, this is already the case for
p € {1,400}.

p
<t =slP(Lop)”;

1 n
(i) oyt = 2303

HM&

similarly,
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We first extend ®(-;s) into a nonlinear operator of the linear space R%*™ by defining, for all
i c Rdxn’

(%) =: &(7(X); 9),

where
Rxn — D?
T _
(@] )1<y<digisn = (T 1sy<di<ksn
and, for all v € {1,...,d}, Ezl) <. < f?n) refers to the increasing reordering of Z7, ..., 7.

Then, by Proposition 7.3.1, we have, for all X,y € R4*™,

12X) = 2(F)le < Lil|7(X) = 7(F)ller < [[K—Flor,
12(X) = 2@)lle= < Looll(X) = 7(F)lle= < K= Flle,

where || ||, and || - ||g= refer to the usual £! and £ norms on the linear space R4*™. The second
inequality of both lines follows from the observation that, for all v € {1,...,d}, if we define

1 o1
=1
and
l i w 7)) € P Rz)
n 20 )

then, with the notations of Definition 2.6.1, m <7, and

1 n
/(mm’)ER2 |z — 2/ [Pm(dzdz’) = EZ T-g]P

while Remark 2.6.3 yields
1N _
Wp(m,m’) = o ; |I’(Yk) - y’(yk)|p,

with the notations of the definition of w. The conclusion follows from the minimality of the
Wasserstein distance.
We deduce that

1
(7.28) P(X) - 0(y) = /0:0 D®((1 — )X + 6y)(X — y)dd,

where the matrix D®(z) is defined dz-almost everywhere and satisfies
ID2@)llr < L1, |IID2(@)][e= < Lo,

and ||| - |||e» refers to the norm of operators on (R4*™, || - ||s»). Applying the Riesz-Thorin Theo-
rem [30, Theorem VI.10.11, p. 525], we obtain that, dz-almost everywhere,

D2 (@)][ler < Ly,
with £, := £1/7£ /7. Injecting this relation in (7.28), we conclude that
B - B ler < Lyl[% — Fler-
Taking X = x,¥ =y in D%, and p € (1, +00), we rewrite the inequality above as

d n d n
ZZI@ =y )I? < (L)P DD e =l

1k=1 y=1k=1

and we conclude by dividing both parts of the inequality by n and taking the power 1/p. O
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8. Construction and identification of stable semigroup solutions

This section is dedicated to the proof of Theorem 2.6.5.

In Subsection 8.1, we explain how to pass to the large-scale limit in the discrete stability es-
timates of Theorem 2.5.2, which naturally yields Wasserstein stability estimates on the solutions
to (1.5) obtained by Theorem 2.4.5. As a byproduct of these stability estimates, we show that our
solutions are semigroups on appropriate classes of vectors of probability measures.

In Subsection 8.2, we introduce the uniqueness conditions of Bianchini and Bressan for the
system (1.5), and show that our solutions satisfy these conditions. This allows us to identify all
our semigroup solutions, and to finally complete the proof of Theorem 2.6.5 in Subsection 8.3.

8.1. Construction of stable semigroup solutions. In this subsection, we combine Theo-
rems 2.4.5 and 2.5.2 to construct stable semigroups solving (1.5). The main result of this subsection
is Proposition 8.1.7.

8.1.1. Further properties of the Wasserstein distance. The convergence in Wasserstein distance of
any order implies the weak convergence on P(R) [54, Theorem 6.9]. The converse is not true, but
the Wasserstein distance however enjoys the following lower semicontinuity property.

Lemma 8.1.1 (Lower semicontinuity of the Wasserstein distance). Let (my)n>1 and (m),),>1 be
two sequences of probability measures on R converging weakly to the respective limits m and m' in
P(R). Then, for all p € [1,+00],

W, (m,m") < liminf W,(m.,, m),).

n—-+4oo

Of course, both terms of the inequality above can be infinite.

Proof. For p € [1,4+00), the result is proved in [54, Remark 6.12]. If p = +o0, then letting
F, :=Hxmy, G, :=Hxm!, F:=Hsxm, G:= Hxm/, Lemma 2.3.6 yields, for all continuity
points v of |F~t — G71,

[F~H(0) =G (0) = lim_[F(v) = G5 (v)]

n—-+oo
< lim inf S |F () = G ()] = Tim inf Weg (m, my,).

Since the function |[F~! —G~1| is left continuous with right limits, we deduce that the bound above
holds for all v € (0, 1), which implies the desired result. O

Throughout this section, the following notion of Wy stability class plays an important role.

Definition 8.1.2 (W stability class). For all m* € P(R)?, we denote by Pm~ the Wy stability
class of m* defined as the set of m € P(R)? such that

ng) (m*,m) < 400,
where we recall the definition (2.11) of the distance ng).
The topology of Wy stability classes is described by Lemma 8.1.3.

Lemma 8.1.3 (Properties of Ppy+). For all m* € P(R)?, the set P« is complete and separable
for the ng) topology.

Proof. Let m* € P(R)? and recall the Definition 8.1.2 of the W stability class P If m* =
(m*t,...,m*%) is such that

d
Z/ |z|m™7 (dz) < 400,
=1 z€eR

then Pp,- is the space of all m € P(R)? satisfying the same integrability condition, and Lemma 8.1.3
follows from [54, Theorem 6.18].

In the general case, it is clear from the definition of Py,+ that there is no loss of generality in
assuming that d = 1, therefore we now fix m* € P(R) and prove that the set P,,~ of probability
measures m € P(R) such that Wy (m,m*) < 400 is complete for the W; topology and contains a
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countable and dense subset. If (m,),>1 is a Cauchy sequence in P,,~ for the W; topology, then,
by the triangle inequality, sup,,~; W1(m*,m,) < +oc. Now for M > 0,

ma({z: 2| > MY) < m*({z: o] > M/2}) + %Wl(m*,mn),

so that the sequence (my),>1 is tight. One may extract a subsequence converging weakly to mq.
From the lower semicontinuity of W stated in Lemma 8.1.1, one easily checks that me, € P+
and Wi (my,, ms) tends to 0 as n grows to infinity.

Let us address separability. For all integers M > 2, let us denote by 73 M the set of probability
measures on R equal to the sum of the image m3, of the Lebesgue measure on [O, 1/MJU[1-1/M,1]
by (H * m*)~! and a finite linear combination of Dirac masses at rational points with rational
coeflicients. We prove that the countable set

P = U poM
M>2
is dense in Pp,». To this aim, we fix m € P,,~ and € > 0. For M large enough,

1/M 1
/ |(H>s<m)’1(u)—(H*m*)’l(u)|du+/ |(H % m) = () — (H 5+ m*) ™ (u)|du <
u=0 u=1—1/M

l\DIm

It follows from the proof of [5, Theorem 6.18], that the image m™ of the uniform probability mea-
sure on [1/M,1—1/M] by (H*m)~! may be approximated by a finite linear combination Zj:l a;j0q,
of Dirac masses at rational points with rational coefficients so that Wy (m?, Ej:l a;jd.;) < €/2.
Now

J a 1/M
Wi |m mM—i—Z ————6,, S/ |(H *m)~ (u) — (H *+m*) " (u)|du
u=0
M -2 -
+ i W, mM,Zajémj
1
b ey ) = (0 em) )
u=1—1/M
<e
which concludes the proof. (I

In order to work with a distance on P(R) that can be compared with the Wasserstein distance
of order 1, but is weaker and only metrises weak convergence, it shall be useful to introduce the
following modified Wasserstein distance.

Definition 8.1.4 (Modified Wasserstein distance). For allm, m’ € P(R), let us define the modified
Wasserstein distance W1 (m,m') by

Wi(m,m') ;= inf / (Jz — 2’| A 1)m(dada’),
(z,x")€R?

m<n,
with the same notations as in the Definition 2.6.1 of the Wasserstein distance.
It is clear that, for all m,m’ € P(R), Wy (m,m’) < Wi(m,m’). Besides, a sequence (my,)n>1

converges weakly to m € P(R) if and only if Wi(m,,, m) converges to 0; this follows from [54,
Corollary 6.13] since the distances |z — 2’| and |z — 2’| A 1 induce the same topology on R.

8.1.2. The discretisation operator. Recall the Definition 2.6.4 of the discretisation operator. The
convergence properties of this operator are addressed in Lemma 8.1.5 for the weak convergence of
marginals and Lemma 8.1.6 for the Wasserstein distance.
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Lemma 8.1.5 (Weak convergence of the initial discretisation). Let m = (m!,...,m?) € P(R)<.

)

For all n > 1, let us denote x(n) := xpm. Then, for all v € {1,...,d}, the sequence of empirical

distributions

converges weakly to the probability measure m”.

Proof. For all n > 1, for all v : k € P, let us define

)= (e (g ) e = e ()

so that '~ (n) < z)(n) < 27" (n). Fix v € {1,...,d} and define the probability measures m)’~
and m)'* on R by

m)E == Zéyin)—Ui (H*m7)™ !,

where

1 n
U,:i: = E Z 5(2k:|:1)/(2(n+1)) S P([O, 1])
k=1

By an elementary Riemann sum argument, both U, and U} converge weakly to the Lebesgue
measure U on [0,1]. By the Mapping Theorem [3, Theorem 2.7, p. 21], we deduce that both m}>~
and m)'" converge weakly to m?. On the other hand, it follows from the definition of 2}~ (n) and
27" (n) that for all z € R,

Hsm)~(x) > H+m)(x) > H+m) " ().

By Lemma 2.3.6, we deduce that, for all z € R such that m”({z}) = 0, both the left- and right-hand
side above converge to H *m?(x), and by the squeeze lemma, so does H *m] (z). By Lemma 2.3.6
again, we conclude that m; converges weakly to m?. O

Note that a slight generalisation of the proof, based on the second example in [, Example 2.3,
p. 18], actually allows to prove that the sequence of empirical distributions

1 & 4
==~ 0l g € PRY
k=1

converges weakly to the probability measure 7 € P(R?) defined by
m:=Uo ((Hxm")™", ... (H=* 7”/1(1)71)_1 :

where U refers to the Lebesgue measure on [0, 1]. Of course, the marginal distributions of m are

1 d
m-,...,m%

We now address the convergence in Wasserstein distance of order 1 of the discretisation oper-
ator. If there exists v € {1,...,d} such that the first order moment of m? is infinite, then we

cannot expect the ng) distance between the empirical distribution associated with y,m and m

to converge to 0, as this distance is always infinite. We however have the following finer result.

Lemma 8.1.6 (Wasserstein convergence of the initial discretisation). Let m,m’ € Ppy«. Then,
for all p € [1, 400,

n+1

1/
Wn > 1, ||xnm—xnm’||ps< ) W (1m, m'),

where we take the obvious convention that ((n 4 1)/n)/>° =1, and

i = |}, = WP (m, ')
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Proof. Let us fix m = (m',...,m%),m’' = (m,...,m'?) € Pand vy € {1,...,d}.

On the one hand, recall that by by Remark 2.6.3, ||x,m — x,m’||, is the Wz(fl) distance between
the empirical distributions of y,m and y,m’, therefore by Lemma 8.1.5 and Lemma 8.1.1, we
deduce that

I d
lim inf ||y m — xum'l[, > WP (m, m'),

for all p € [1, +o0].
On the other hand, for all p € [1, +00), the Jensen inequality yields

n p

d
o — x|l = T3S

(2k+1)/(2(n+1))
(n+ 1)/ (H*m")"(v) = (H *m") " (v)) dv
y=1k=1 v

=(2k—1)/(2(n+1))

n41<a Im/@m+) ,
< / |(H * m'y)*l(v) — (H = m/'y)*l(v) dv
F=1/v=1/(2(n+1))
n+1
< (WL (m, ),
therefore Y
n+1 P
o = o'y < (50 ) W0 ),
and consequently
lim sup || x,m — x,m’'[|, < W](Dd)(m, m'),
n—-+oo
which completes the proof for p < +00. The case p = 400 is similar — actually easier. ([l

8.1.3. Construction of the operators (S¢)i>0. By Lemma 8.1.5, for all m € P(R)¢, the sequence of
initial configurations (x,m),>1 satisfies the assumptions of Theorem 2.4.5. Therefore there exists
an increasing sequence of integers (ns)¢>1 along which u[y,,m] converges to a probabilistic solution
to the system (1.5) with initial data defined by u] = H * m?. The sequence (ns)¢>1 depends on
m. In the following Proposition 8.1.7, we remove this dependency, which enables us to construct
stable semigroup solutions to (1.5).

Proposition 8.1.7 (Construction of the operators (S;)). Under Assumptions (LC) and (USH),
let us fir m* € P(R)? and let N be an unbounded set of positive integers. Then, there exists an
increasing sequence (ng)e>1 C N such that, for all m € Py, the empirical distribution w[x,,m] of
the MSPD started at xn,m converges weakly to some probability measure tim] € M when £ grows
to infinity. For all t > 0, let us denote by

(8.1) S;m = (S}m,...,S%m) := (i} [m], ..., T [m)])
the vector of associated marginal distributions.
The family of operators Sy : Pm= — P(R)? has the following properties.
(i) For all m € Py, the vector of CDFs u = (u', ... ,u?) defined by u”(t,-) = H (S m) is
a probabilistic solution to the system (1.5) with initial data (ug,...,ud) defined by uj =
H xm". Besides, the measure W[m] is the image of the Lebesgue measure U on [0,1] by

the mapping
U= (ul(tv ')71(1))5 v aud(tv ')71(1))))520 :
(i) For all t > 0, for all m € Py, Sym € Ppy«. Besides, for oll p € [1,400], for all
m,m’ € Py, for all s,t >0,
W (Sym,S;m’) < £,W (m,m’) + |t — s|Lc,p,

where Lg,y, is defined in (2.1) and L, is defined in (2.9).
(i1i) The family of operators (Si)i>0 is a semigroup on P .

Following Lemma 8.1.3, the space Py~ metrised by the ng) distance contains a countable

and dense subset P2 .. By Proposition 4.3.1, for all m € PY,., the family of probability measures
(u[xnm)])nen is tight. By a diagonal extraction procedure, we obtain that there exists an increasing
sequence of integers (ng)e>1 C N such that, for all m € PY., u[x,,m] converges weakly to a
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probability measure fm| in M. As a consequence, we first define the operator S; on the subset
PY.. by (8.1). This operator enjoys the following properties.
Lemma 8.1.8 (Stability on P2,). Under the assumptions of Proposition 8.1.7,

(i) for all m € PY,, for allt >0, S;m € Pry-,

(ii) for all m,m’ € PY.,

(8.2) supwgd)(Stm, Sm’) < ﬁlwgd)(m,m’).
>0

Proof of (i). Let m = (m!,...,m?) € PY... Following Definition 8.1.2, since W( )( ,m) < 400,
it suffices to check that, for all t>0,

S0 Wa(m?, 17 m)) < oo

Combining Proposition 4.3.1 and Lemma 8.1.1, we have

d d

> Wi(m?, 1 [m]) < lim inf > Wi (g [xne ], 17 [, )
y=1 oo y=1

But using Remark 2.6.3 and Theorem 2.5.2, we rewrite

> Wi(g Deneml, 17 [nem]) =[x, m = @0, mi )1 < tLe,
y=1

which completes the proof.

Proof of (ii). Let m, m’ € PY.. By Proposition 4.3.1 and Lemma 8.1.1, we have

ng)(Stm, Sym’) < hmmfZWl W) [xn, m), 1 [Xn, m]).

£—+00

By Theorem 2.5.2,

> Wi (] [xn,m), 1] [xn,m]) = || @ (x5 t) — D(xn,m';8)[[1 < L1xn,m — x| 1,

and by Lemma 8.1.6,

Jim[xem = xo,m'[; = Wi (m, m'),
—+

which completes the proof. ([

Since the set PQ. is dense in Pm- and the latter is complete for the ng) distance, we deduce
that the operator S; possesses a unique continuous extension to P+, which satisfies the same
stability estimate (8.2), for all m,m’ € Pp+. We now check that S;m coincides with the weak
limit, when ¢ grows to infinity, of (1} [xn,m], ..., t¢[xn,m]).

Lemma 8.1.9 (Identification of S;). Under the assumptions of Proposition 8.1.7, for allt > 0, let
S: be defined on Pm» as above. Then for all m € Py, for all v € {1,...,d}, u![xn,m] converges
weakly to S7m in P(R).

Proof. Recall that, if m € P, then the result is nothing but the definition of S;. Otherwise, we
argue as follows. Recalling the Definition 8.1.4 of the modified Wasserstein distance W1, we prove
that

d
(8.3) lim ZWl Ym, ) [xn,m]) = 0.

Z—H—oo
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To this aim, let us fix € > 0 and m’ = (m/!,...,m'?) € PY.. such that W( )( m’) <e. Then, for
allt >0, for all £ > 1,

d
Z Wl (S?mv Hz [anm])
y=1

d d
Wi(S/m, $/m Z (S{m’, w/ [xy, m Z 1 (k¢ [xn,m'], 1/ [xn, m]).

1 =1

M=

<

2
Il

By the properties of Wy and (8.2),

d
W1 (Sm, Sjm’) < L1 Wi(m?,m') < Lye.
y=1

W1(S{m, S{'m

M=~
HM@-

1

2
Il

By the properties of W1 and the construction of the sequence (ne)e>1,

d
lim ZWl (S{m’, 1] [xn,m’']) = 0.

E~>+oo

By the properties of W; and Theorem 2.5.2,

M=

d
Z Ht Xne ] H;Y[Xnem]) < Wl(uz [Xnem/]a H;Y[anm])

y=1
d
< LY Wi (g xnm'], 1 [xn, m)),
y=1
and it follows from Lemma 8.1.6 that
d
lim ZVVl kg [, m'], g [, m ZVVl m?,m

f—)-i—oo

As a consequence, we have

hmsup Zwl S’Y m, Ht [X"e ]) S 2‘6165

{—+oo =1
and we obtain (8.3) by letting € vanish. O

At this stage, we have constructed a sequence (ny)¢>1 and a family of operators St : P+ — Pm-=
such that, for all m € Py, for all ¢t > 0, for all vy € {1,...,d},

S;Ym: lim H;Y[Xnem]'
L—~o00

We are now ready to complete the proof of Proposition 8.1.7.

Proof of (i) in Proposition 8.1.7. The first part of the point (i) is a corollary of Lemma 8.1.9:
indeed, by the same arguments as in the proof of Theorem 2.4.5, the limit of 1] [x,, m] induces a
probabilistic solution to (1.5).

We now show that not only the marginal distributions, but the whole empirical distributions
t[xn, m] converge in M. By Proposition 4.3.1, the sequence (K[xn,m])r>1 is tight in M; on the
other hand, Lemma 8.1.9 shows that the limit [ of any converging subsequence has marginal
distributions given by S;m. Calling u the associated probabilistic solution to (1.5), we deduce
from Remark 5.1.5 that [ rewrites U o ((u!(t,-)71, ..., u%(t,-)71)i>0) . This shows that all the
converging subsequences of (WU[xn, m])¢>1 have the same limit, and therefore implies [3, Corollary,
p. 59] the whole convergence of W[x,,m] to f[m] := Uo ((ul(t,-)~L, ..., ud(t,-) " )i>0) "t in M.
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Proof of (ii) in Proposition 8.1.7. It follows from the construction of S; that the latter takes
its values in the W; stability class Pm=. Now let p € [1,400], m,m’ € P+ and s,¢ > 0. By
Theorem 2.5.2, for all £ > 1,

WD (1] [ 1], 1 [, m']) < L, WED (15 [xn, ], 13 [n, m']) + [t = 5[ Lo
We obtain the expected result by applying the lower semicontinuity property of the Wasserstein
distance of Lemma 8.1.1 and the convergence result of the initial discretisation of Lemma 8.1.6.

Proof of (iil) in Proposition 8.1.7. Let m € Py« and let s,¢ > 0. To show the semigroup property,

we shall prove that
d

> Wi(S7,m, S/S.m) =0,

y=1
where the modified Wasserstein distance W1 was introduced in Definition 8.1.4. In this purpose,
we first remark that, by the flow property for the MSPD, for all £ > 1,

VFY S {17"'ad}a HZﬂ[Xnem] = Hz[‘b(anm;S)]
therefore we write
d

d d
Z Wy (5?+sm= stsm) < Z Wi (5?+sm7 uz+s[xne m]) + Z Wy (Hz [(I)(Xnem; S)]v stsm)'
~y=1 ~y=1 y=1
On the one hand, Lemma 8.1.9 yields

d
lim Z Wl (S;_va Hz+s[anmD =0.
1

{——+oo —

On the other hand,

Z Wl(uz[q)(Xnem; S)]a Sgssm)

d d
Z P (xn,m: )], 17 [xn, S0 Z 17 [xn, Som], 57S,m),
and using Lemma 8.1.9 again, we have
d
Ziirfoo ;Wl(uZ[XWSSm],S’?SSm) =0.

It therefore remains to prove that

lim Z Wl(uz [®(xn, ms 5)], H?[Xnessm]) =0.
=1

{— 400

In this purpose, we use the domination of W, by W; and Theorem 2.5.2 to obtain

d
> Wi (1] [ (xn,m; 5)], 1) [xn, Ssm]) < L1 W1 (g [ (xn, m; 5)], 1 [Xn, Ssm])
— y=1
< La||®(xn,m; 5) = Xn,Seml[1.
We somehow have to prove that the evolution along the MSPD for a time s asymptotically com-
mutes with the discretisation operation when measured in ng) distance. Let us first note that
this is the case for the weak convergence: by Lemma 8.1.5, the empirical distribution of x,,Ssm
converges weakly to Sgm; while it follows from Lemma 8.1.9 that the empirical distribution of
®(xn,m;s) converges weakly to the same limit S;m € P(R)%.
Let us now remark that by Theorem 2.5.2, and Lemma 8.1.6,

1@ (x5 5) = X, Ssmmi] oo < @ (x5 5) = Xy oo + [ XM = X, S o
< 5L 0o + W (m, S;m),
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and it follows from the point (ii) of Proposition 8.1.7 that wi )(m, Ssm) < sLc . As a conse-
quence, the right-hand side above is lower than 2sLc oo; therefore, letting x(ng) := ®(x,,m;s)
and y(n¢) 1= xn,Ssm,

12 (xn, m; 8) = Xn,Ssm|1 = — Z Z |z, (e) =y (n0)]

vlkl

—ZZM ne) — yp(ne)| A (2sLe,o0)
y=1k=1
d

Z/( - |z —y| A (25Lc,00)my), (dzdy),
x,y)ER

where, for all v € {1,...,d}, the probability measure m} on R? is defined by

1 &
m), = o D S 0w (ne))-
k=1

This probability measure rewrites Uo ((H * ug [®(xn,m; s)]) 7%, (H % ug [xn,Ssm])~') "L, Since both
tg [P (xn,m; s)] and pd[xn, Ssm] converge weakly to SYm € P(R), one deduces from Lemma 2.3.6
that m),, converges weakly to Uo ((H % Sym)~!, (H % S7m)~)~*, which gives full measure to the
diagonal in R?. Since (z,y) — |z — y| A (2sLc o) is continuous and bounded, we conclude that
[|®(xn,m;$) — Xn,Ssm||; tends to 0. O

The semigroup (S;)¢>o still depends on the choice of the sequence (ng¢);>1. We get rid of
this dependency by introducing the uniqueness conditions of Bianchini and Bressan in the next
subsection.

8.2. The Bianchini-Bressan uniqueness conditions. In this subsection, we introduce and
adapt the Bianchini-Bressan uniqueness conditions of [7] to obtain the following lemma.

Lemma 8.2.1 (Uniqueness of the semigroup). Under Assumptions (LC) and (USH), there exists
a family of operators (S;)i>0 on P(R)? such that, for all m* € P(R)?, any semigroup (S¢)i>0 on
Pm+ obtained by Proposition 8.1.7 coincides with the restriction of (gt)tzo to Pm+.

The Bianchini-Bressan conditions are introduced in §8.2.3 below, where we also show that the
probabilistic solutions associated with any semigroup obtained by Proposition 8.1.7 satisfy these
conditions. In order to introduce these conditions it is necessary to give a proper meaning to the
Riemann problem associated with the system (1.5). This is done in §8.2.2, which relies on the basic

properties of entropy solutions to scalar conservation laws that we recall in §8.2.1. The proof of
Lemma 8.2.1 is finally completed in §8.2.4.

8.2.1. Entropy solution to the scalar conservation law. We first recall the following result by
Kruzkov, see [50, Theorem 2.3.5 and Proposition 2.3.6, pp. 36-37].

Proposition 8.2.2 (Existence and uniqueness for the scalar conservation law). Let A : [0,1] - R
be a Lipschitz continuous function, and let up : R — [0, 1] be a measurable function. There exists
a unique weak solution u : [0, +00) x R — [0, 1] to the scalar conservation law

Opu + Oy (A(u)) =0,
{ u(0,) = o(a),

satisfying the entropy condition that, for all ¢ € [0,1],

Olu — ¢ + 9, (sgn(u — ¢)(A(u) — A(c))) <0

in the distributional sense, where

(8.4)



84 Benjamin Jourdain and Julien Reygner

Besides, if the initial datum wug has a nondecreasing version, then for all t > 0, u(t,-) has a
nondecreasing and right continuous version with left limits, and

wglfoo u(t7 LL‘) - mgriloo UQ(LL')

The function u given by Proposition 8.2.2 is called the entropy solution to the scalar conservation
law (8.4). As was shown by Brenier and Grenier [16] and Jourdain [40], it is the appropriate notion
of solution to describe the large-scale behaviour of the Sticky Particle Dynamics. The following
lemma is a generalisation of these results and will be useful in the sequel of the subsection. Its
proof is postponed to Subsection A.4 in Appendix A. For all n > 1, for all x € D%, we denote by
fi[x] the empirical distribution of the Typewise Sticky Particle Dynamics

N 1«
afx] = — kz5(‘i’i[S\(X)](Xﬂf),m,‘i’%[S\(X)](Xﬂf))tzo’
=1

where we recall that the notation ®; [A(x)](x;t) was introduced in §3.2.1.

Lemma 8.2.3 (Large-scale behaviour of the Typewise Sticky Particle Dynamics). Let Assump-
tions (C) and (USH) hold. Let m = (mt,...,m%) € P(R)¢, and let (x(n)),>1 be a sequence of
initial configurations such that x(n) € D2 and, for all v € {1,...,d}, the empirical distribution

1A
=2 )
k=1
converges weakly to m”. Let us assume in addition that the following property holds.
(x) For all v,~" € {1,...,d} with v #+',

; ¥ Y N1 — Y (Y=L (0~ : ¥ ¥ -1 — 2 (7)1
nllgloo Un,o((un,o) (0)7) =ug ((ug) " (v)7), HETOO un,o((un,o) () = ug ((ug)™ (v)),
dv-almost everywhere in (0,1), where u,)  refers to the empirical CDF of x](n), ...,z (n).

Then fi[x(n)] converges weakly, when n grows to infinity, to the probability measure i € M
defined as the image of the Lebesgue measure U on [0,1] by the mapping

v (@t ) (), .. At -)_1(v))t20
where, for all v € {1,...,d}, the function 4" : [0,4+00) x R — [0,1] is the entropy solution of the
scalar conservation law
8" + 9, (AV(m)) —0,

(8.5)
@7(0,-) = Hxm" =: u,

with A7 (u) being defined by
(8.6)

/ _ X7 (b () 7 @) ), T (@) )7 ) vl () T @), () T (@) o

We note that, by Lemma A.2.2, a sufficient condition for the hypothesis () to hold with any
sequence of initial configurations (x(n)),>1 approximating m is that, for all v,~" € {1,...,d} with
~ # v/, the measures m?” and m?" have distinct atoms.

8.2.2. The Riemann problem. Let us now fix £ € R and (ul,u}),...,(u?,ud) € [0,1]%, with
u? <wul forally e {1,...,d}. The Riemann problem for the system (1.5) is the problem

O’ + N{u}d,u” =0,

u?(0,2) = ullpcey +ulliozey-

(8.7) Yy e{l,...,d}, {

Unless u” = 0 and u} = 1, the initial data of this problem are not CDFs, and therefore this system
does not a priori enter the scope of our approach. One can however circumvent this difficulty by
formally adding the missing masses u” and 1 — u] at the respective points —oo and +oco. Then
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by Proposition 5.1.1, the trajectories (X)) (¢)):>0 associated with any probabilistic solution to the
Riemann problem (8.7) are expected to satisfy

Vo e (ul,ul), Vt=>0, E+t inf N(u)<X)(t) <&+t sup A (u),
uelo,1]¢ uelo,1]¢

for coordinates y such that u? < uJ . Under Assumption (USH), we deduce that these trajectories
evolve in separated space-time cones for positive times, so that the Riemann problem (8.7) is
actually uncoupled into d scalar problems. Since we noted in Remark 2.4.3 that, in the scalar
case, our definition of probabilistic solutions is consistent with the conservative equation (1.6), this
motivates the following definition.

Definition 8.2.4 (Solution to the Riemann problem). Under Assumptions (C) and (USH), the
solution to the Riemann problem (8.7) is the function u = (ul,... ud) : [0,4+00) x R — [0, 1]¢ such
that, for all v € {1,...,d}, u? is the unique entropy solution to the scalar conservation law

D + 9, (AT(u7)) = 0,
u'(0,2) = ul Lpcey +ullin>gy,

where AV is defined on [u’,ul] by

(8.8) A (u) ::/ A, a? e ud ) do.
'U_'U/’Y

According to Proposition 8.2.2; we shall always implicitly assume that, for all v € {1,...,d},
for all ¢ > 0, the function w7(t,-) is nondecreasing, right continous with left limits.

8.2.3. The Bianchini-Bressan conditions. Given a function u = (u!,... u?) : [0, 4+00) xR — [0, 1]¢
such that, for all v € {1,...,d}, for all t > 0, u”(¢,-) is a CDF on the real line, we define the total
variation of u(t,-) on the interval (a,b) C R by

d
TV{u(t,- Z uw(t,b7) —u(ta)).

For all (7,€) € [0, +00) x R, we also denote:
. Ui g = (Uﬁ 1T o Uﬁ - £) the solution, in the sense of Definition 8.2.4, to the Riemann
problem (8. 7) with uz =u"(7,§) and ul = u(7,§),

. UZ.,-& (Ub 1 Ub,-d

wrer o Uuir £) the solution to the linear problem with constant coefficients

oY + A {u}(r,£)0,0" =0

v7(0,z) = u (1, x).

vy e{l,...,d}, {

Note that, by the method of characteristics, we have, for all v € {1,...,d},

VE>0, U (t,z) =u (1, — N {u}(r,)t).

u;7,&

The following definition is adapted from [7, Definition 15.1, p. 307].

Definition 8.2.5 (Bianchini-Bressan conditions). Let Assumptions (C) and (USH) hold. Let
u=(ul,...,u?) : [0,400) x R — [0,1]¢ such that, for all v € {1,...,d}, for all t > 0, u(t,-) is
a CDF on the real line, and the mapping t — u(t,-) is contmuous in LL (R)L. The function u
is said to satisfy the Bianchini-Bressan conditions for the system (1.5) if it satisfies the following

estimates.
(i) Shock estimate: dr-almost everywhere on [0,+00), for all £ € R, for all 3’ > 0,

d

&4+8'h i
Y _
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(ii) Flat estimate: there exist C > 0 and 8 > 0 such that, for all (1,£) € [0,+00) X R, for all
a,b € R such that a < £ < b,

b—Bh  d
lim sup — / Z [uY (T + h, ) Ui’.z ¢(h,z)|dz < C(TV{u(r,); (a, b)),
h10 e=a+ph T

In order to use the uniqueness result by Bianchini and Bressan [7, Section 15] in our setting,
we first check that the probabilistic solutions to (1.5) obtained in Proposition 8.1.7 satisfy the

Bianchini-Bressan conditions. This is done in Lemmas 8.2.6 and 8.2.7.
.

Lemma 8.2.6 (Flat estimate). Under Assumption (LC), any probabilistic solution u to (1.5),
such that t — u(t,-) is continuous in L (R)?, satisfies the flat estimate of Definition 8.2.5.

loc

Proof. Let u be a probabilistic solution to (1.5) such that ¢ ~ u(t,-) is continuous in Li _(R)9,

and let us fix (7,€) € [0,400) X R, a,b € R such that a < £ < b. For all v € {1,...,d}, for all
(h,z) € [0,400) x R, let us define

b,
w?(h,x) == u (1 + h,x) = U7 (h, @),

and let us also denote A\ := X"{u}(r, ). Then we have, for > 0 small enough,

b—ph d . b—Bh
(T + hyx) = Ug) o (h,z)|de = / |w? (h, z)|dx.
/ac a+6h Z it Z a+pBh
Besides, in the distributional sense,
Opw” (h, ) = =N {u}(r + b, 2)du” (7 + h, ) + N 0,UY (h, @)
= (V7 = W {ud(r + b)) dy (7 + b, ) = V0,07 (h ).
As a consequence, letting w7 (h,y) := w? (h,y + A7h), we obtain
o (h,y) = (XV N {ub(r + by + 5\7h)> Ao (7 + hyy + ATh),
while WY (0,y) = 0. We deduce that, for any 8 > 0 and for h > 0 small enough,

1 [b—Bh 1 [o-(BHAA
s o= [ @y
x=a+Lh y=a+(B—=A7)h

1 b—(B+A")h h
< _/ / 00 (1, )| AR dy
y=

~h a+(B—A1)h
b—(B+A7)h
// ~/y a+(B— XV)h
For the sake of clarity, we kept the last computation at the formal level, but it can be made rigorous
by using suitable test functions.
We now estimate the integral term in the right-hand side above. To this aim, we fix 5 > L o,

so that B—AY > 0 and B+ A7 > 0. Then, for all 0 < k' < h, for all y € [a+ (8—\)h, b— (B4 A7)A],
letting x := y + AVh/ yields

— N {ul(r+ By + N Ao (1 + By + A R)dR.

A7 = Xl Wy + A = WH{ub(n, ) = X {ud (4 o)

1
S/e O‘X’ 7,8),. (1—9)u”(7’,§7)+9u7(7',§),...,ud(T,g))
— A7 (ul(T—l—h/,x),...,(l -0 (r+ 1, z7) +9u7(r—|—h’,x),...,ud(T—Fh’,:z:))‘dG

<Lic ), ‘“V'(T, & —u (T + 1, :v)‘
v #EY

T2 (€)= (o W) (7€) — ()
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We now prove that, for all v/ € {1,...,d},
(8.9) W (rya) < W (T4, a7 and W' (r 41, z) <u (1,b7),
which, on account of the estimation above, implies that

X {u}(r+ 1,y + ANR)| < LeTV{u(r,-); (a,b)}.

By Corollary 1.2, we already have uY (1,a) < v (1t + W,a + X' h’) and u” (7, b’) > u (1 +

B, (b—i—A’Y h')~). To obtain (8.9), it now suffices to show that a + X' h' <z < b+ A1 Recalling
the definition of # = y+\"h’ with a+ (8—A\)h < y < b—(8+A7)h, we deduce that the conclusion
follows from the inequalities

N4+ XN(h—h)<pBh and  —ATH —N(h—h)< Bh,
which are due to the facts that § > L¢ oo and 0 < k' < h, with h > 0. As a consequence,
1 [b-Bh (B+X")h .
—/ |w”(h,z)|dz < LycTV{u(r,);(a,b)} - / / du? (T + R,y + AR)dR.
h r=a+Lh '=0 Jy=a+(B— S\W)h

But for 0 < i/ < h,

b—(B+A7) . . .
/ (TR y+ N = (T + b= (B X))+ AR
y=a+(B—A7)h

— (T + N, a+ (B—=X)h+ AR
S U’Y(Ta bi) - u’Y(Ta a)v

by the same arguments as for the proof of (8.9). We finally deduce that

b—pBh )
Z [ el < e (T (utr g DD

a+pBh
which completes the proof. ([

Lemma 8.2.7 (Shock estimate). Under Assumptions (LC) and (USH), let m* € P(R)¢ and
let (S¢)i>0 be a semigroup on P~ obtained by Proposition 8.1.7. Then, for all m € Ppy», the
function u = (u', ..., u) :[0,+00) x R — [0,1]% defined by u”(t,z) := (H * S{m)(x) satisfies the
Bianchini-Bressan conditions of Definition 8.2.5.

Proof. Let m* € P(R)? and let (S¢);>0 be defined on P+ by Sy m = limg_, o i[xn, m], where the
sequence (ny)¢>1 is extracted in Proposition 8.1.7. Let us fix m € Py« and write u? (¢, ) = HxS; m
By Proposition 8.1.7 and Remark 5.1.4, the function ¢ — u(t, -) is continuous in L] _(R)?; besides, u
is a probabilistic solution to (1.5), therefore Lemma 8.2.6 implies that it satisfies the flat estimates.

Hence, it only remains to check that u satisfies the shock estimate. Following the lines of the
proof of the necessity part in [7, Lemma 15.2, p. 308], the crucial argument is the following localised
stability estimate with respect to the solution of the Riemann problem: dr-almost everywhere on
[0, +00), for all £ € R, for all a,b € R with a < £ < b, we have, for h small enough,

d

b—Lc,00h p d
(8.10) / > (4 hyw) - Uﬁlg(h,xﬂdxgﬁl/ > (r,x) = UEY (0, )|da.
r=a+Lc,och =1 T=

The proof of (8.10) is postponed below. Taking this estimate for granted, let us fix (7, &) as above
and let and 8 > 0. Applying (8.10) with a =& — (Lc,coc + )0, b =& + (Lo,co + 8')h and h > 0
small enough, we obtain
e+p'h  _d ¢ d
/ S (7 + hox) — UL ((hy2)|dz < ,cl/ S (rx) —u (7, 7)) |da
r=§—f'h =(—(Lo,etB)h 1
£+(Lo,ot+B)h _d
+ L / Z |u (1, x) —u (7, &)|dz.
r=£ =1
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For all v € {1,...,d}, the monotonicity of the function «”(7,-) yields
3
/ () — (7€) |dx < (Lo + BB {7 (1. €7) — (€ — (Lo + 8))}.
z=(—(Lc,00t+B')h

E+(Lc,0ot+B")h
/5 [u¥(r,2) —u(7,€7)|dz < (Le,oo + B A{u (7, + (Le,oo + B)R) —u?(1,€)},

and, since the function u”(7, -) is right continuous and has left limits, the braced terms vanish with
h. As a conclusion,

&+8’'h  d
lim — / Z|u7 (1 +h,x) UﬁTf(h,xﬂdx =0,
€=B'h 21

i.e. u satisfies the shock estimate.

Proof of (8.10). By Proposition 4.3.1, dr-almost everywhere, we have

Vz € R, Agu” (1, 3) A (1,2) = 0,

for all v,7" € {1,...,d} such that v # 4. Let us fix 7 > 0 such that the condition above is
satisfied, and a,b,¢ € R with a < £ < b. We first define Wy = (T, . . - ,Ug) by

w(r,z) ifz<a,

u¥(r,&7) ifa<z <,
W)= 4 0E )

ur(r,§) &<z <,

u¥(r,x)  ifb<a.

We also define the vectors m, and m, in P(R)¢ by uY(7,-) = H *m} and uj = H «+m). It is
straightforward that ng)(mT,mT) < +00, and by Lemma 8.1.8, we have m,, m, € Py+. As a
consequence, we deduce from Proposition 8.1.7 that, for A > 0 small enough,

b—Lc,och
/ L Z (7 + h,z) = (H + S}, ) (2)|dz < Wi (S, m, S,7,)
Tr=a C, ch —

< Elw(d) (mT, ET)

—Elz/ [uY (1, 2) — uf(x)|dx
z€R

s / Z [ (r, ) — UEY (0, 2)|da,
T=a ]

where we have used (2.10) to identify the W; distance between probability measures with the L!
distance of their CDFs. Hence, to complete the proof of (8.10) it remains to prove that, for small
times h, Uﬁ’lg coincides with H * ShmT on (a+ Lc,ooh,b— Le,ooh).
For all n > 1, we denote x(n) = x,m,, so that
(2k+1)/(2(n+1))

z}(n) = (n+ 1)/ (@g)H (w)dw.

w=(2k—1)/(2(n+1))

Let us define y(n) € D by

(n) = zj(n) if 2l (n) & (a,b),
NS if 2} (n) € (a,b).

We first show that, for all h > 0, S;/m; is the weak limit, in P(R), of u} [y (n¢)], where we recall that
sequence (ng)¢>1 is given by Proposition 8.1.7. To this aim, we note that, for all v € {1,...,d},
since 7y is flat on (a,§) and (£,b), then 2} (n) € (a,€) only if 2(k —1)/(2(n+ 1)) < u(1,§7) <
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2(k+1)/(2(n+ 1)), so that there is at most one such z] (n). Similarly, there is at most one z} (n)
in (£,b). Hence,

d(b—a)

n

x(n) =y ()l <

As a consequence, and recalling the Definition 8.1.4 of the modified Wasserstein distance W1,

d d
> Wi (ST, 1y (ne)]) < 3 (Wa (ST, 1) Ix(ne)]) + Wa (1] (o), 17 [y (me)]) )

y=1

2
Il
—

M=

(Wi (87T, 17 Bx(me)]) + Wi (1] (o), 07 [y () )

1

2
Il

W (ST, g [x(ne)]) + Lalx(ne) = y(ne)|1,

M=

2
Il
—

and the right-hand side above vanishes when £ grows to infinity thanks to Lemma 8.1.9.
We now set

L E—aAG-9
max - 2LC oo )

and show that, for all A € [0, hmax), for all z € (a + Lc,ooh, b — Lc,ooh),

(8.11) H ) [y(n)l(z) = H * i [y(n)](2),

where [i[y(n)] refers to the empirical distribution of the Typewise Sticky Particle Dynamics started
at y(n). This follows from the observation that, for all v : k € PZ, both ®](y(n);h) and
) [A(y(n))](y(n); h) remain between y] — Lc,ooh and g} + Le,ooh, so that:

o if y](n) < a, then ®)(y(n); k) <z and &} [A(y(n))](y(n): h) < z,

o if y/(n) > b, then @) (y(n);h) > x and @] [A(y(n))](y(n);h) > z.
Finally, if y/(n) = £, then the definition of hyax ensures that, on the time interval [0, hyax), the
particle 7y : k cannot collide with another particle having an initial position which is not £. Besides
by Assumption (USH), this particle evolves in a space-time cone that is disjoint of the space-time
cones in which particles of other types evolve, so that @] (y(n); k) = ®}[A(y(n))](y(n); h), which
yields (8.11).

The next step is to use Lemma 8.2.3 to describe the limit, when £ grows to infinity, of fiy(ne)].
We already know, from the argument above, that the empirical distribution of y{(n),...,y}(n)
converges weakly to m). We now have to check that the corresponding CDFs satisfy the hypothe-
sis () there.

We denote by %,  the empirical CDF of y]'(n),...,y}(n), and fix v,7" € {1,...,d} such that
v # 7. Recall that 7 is chosen so that the measures m? and ml/ have distinct atoms, and that
ml, by moving all the mass on [a,£) to a, and all the mass on
[£,b) to €. As a consequence, the measures M) and ml/ have distinct atoms, except possibly in
a, & and b. Following the proof of Lemma A.2.2, (x) is already satisfied dv-almost everywhere on
(0,1)\ (u(r,a™),u(r,b)).

Now for all v € (u”(7,a™),u"(7,£7)), (@), )" (v) = a = (@)~ " (v) for n large enough. As a
consequence,

my, m'V are obtained from m?7,

’

J— — —_ 1 -
0((T5 0) 1 (v) = T @) = EZ (i (m)<a)

We recall that, by the definition of y(n), for all k € {1,...,n},
o if (2k+1)/(2(n+1)) < ﬂg/ (a), then yzl(n) < a,
o if 2k —1)/(2(n+1)) > 7] (a), then y} (n) > & > a,

from which we deduce that

/ ’

— _ 3
) 0(@) 7 (@)] < -



90 Benjamin Jourdain and Julien Reygner

therefore
’ !
5y

10,0 ((ﬂjw,o)_l(v)) =uy ()" (v)).

lim @
{— 400
Similarly,
Jim T (3,07 0)7) =1 ((5) 7 (0))

is obtained by noting that

o if (2k+1)/(2(n+1)) < ﬂg/ (a™), then yzl(n) <a,

o if (2k—1)/(2(n+1)) > ﬂg/ (a™), then yzl(n) > a.
We use the same arguments to address the cases v € (uY(7,&7), v (7,€)) andv € (u(7,&),u?(7,b)),
which finally shows that the condition (x) is satisfied. We can now apply Lemma 8.2.3 and deduce
that fi[y(n¢)] converges weakly to some probability measure ft in M, such that @ (¢,-) := H * 1] is
the entropy solution of the scalar conservation law (8.5) with initial datum %]. Besides, by (8.11),
we have

Vh < Amax, Vo € (a+ Lc,coh,b— Lo,ooh), (H « S)m;)(z) = a"(h,z).
To complete the proof, we finally show that @7 (h,z) = Uk (h,z) for (h,x) as above. To this

aim, we recall that these functions are the entropy solution:g)fg scalar conservation laws with re-
spective flux functions A7 and A7, which are respectively defined by (8.6) and (8.8), and respective
initial data @ and u” (7, )l peey +u7(7,§) L >¢}-

By Proposition 8.2.2, Uﬁ’;yg(t,x) € [u¥(r,67),u¥(r,€)] for all (¢,z) € [0,+00) x R. On the other
hand, it is straightforward to check that, on [u(7,£7),u” (7, )], the flux functions A7 and A” only
differ by a constant function. In other words, Uﬁzg is also the entropy solution of the conservation

law with the same flux function A7 as @7, but with different initial data. The initial data however
coincide on the interval (a,b), which, by [50, Proposition 2.3.6, p. 37], is enough to ensure that
@ (h,x) = Uﬁ’g_ﬁg(h, x) as long as h < hpmax and € (a + Lc,ooh, b — Lo,ooh). This completes the
proof. O

8.2.4. Proof of Lemma 8.2.1. The proof of the uniqueness result by Bianchini and Bressan |7,
Sufficiency part in Lemma 15.2, p. 309] is readily adapted to our setting, and we do not reproduce
it. We only highlight the fact that it relies on the L' Lipschitz continuity result [7, (15.8) p. 309],
which by (2.10) is our W; stability estimate of (ii) in Proposition 8.1.7, and the localised stabil-
ity estimate [7, (13.13) p. 294], which must be replaced with the following generalisation of our
estimate (8.10), the proof of which is postponed below.

Lemma 8.2.8 (Localised L! stability estimate). Under the assumptions of Proposition 8.1.7, let
m* € P(R)?, and let (S;)i>0 be a semigroup obtained by Proposition 8.1.7. For all m,m’ € Pp,«,
for all a,b € R with a < b, for t > 0 small enough,

d

b—pgt d b
/ Z |w(t, ) — 07 (¢, z)|dx < L/ Z |u7(0,2) —v7(0, z)|dz,

=a+Bt S =a y=]
with B = Lo ,so and L = L1, where v (t,z) := (H x S{m)(z) and v7(t,z) := (H * S;m’)(x).
Then we deduce that, for all m* € P(R)4, for all semigroups (sﬁ”)tzo, (S§2))t20 defined on Py~
and obtained by Proposition 8.1.7, we have, for all t > 0,
stV =S on P
As a consequence, for all t > 0, the operator S; defined on P(R)? by
VYm* € P(R), S;m* := S,m"*,
where (S;);>0 is any semigroup on P obtained by Proposition 8.1.7, is uniquely defined. In
order to emphasise the fact that S; is defined on Pp,+, we denote ng*). To show that S; coincides

with ng*) on P+, we let m’ € Pyy«. Then, by definition,

§tm’ = ng/)m’,
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where (ng/))tzo is any semigroup on Py, obtained by Proposition 8.1.7. But since Ppy = P+,

we deduce from the uniqueness result of Bianchini and Bressan that ng/) = ng*), so that
gtm' = ng*)m’
This completes the proof of Lemma 8.2.1.

Proof of Lemma 8.2.8. The proof is quite similar to the proof of (8.10) in Lemma 8.2.7. Let
m* € P(R)¢ and let (S;);>0 be a semigroup obtained by Proposition 8.1.7. Let us fix m, m’ € Py,
a,b € R with a < b, and define v} := H *m?, vj := Hx«m'?, u"(t,z) := (H = S/m)(z) and
vV (t,x) = (H * S{m’)(x).

For all v € {1,...,d}, we define the CDFs u} and v} by

ud(z) Avg(z) ifz<a, ug(z) Aug(z) if o <a,
ug (z) == < ug(x) ifa<az<b, To(x) := 4 vy () ifa<az<b,
ud(x) Vg (z) if x>0, ud(x) Vg (z) if x>0,

and let m, m" € P(R)? be such that u] = H+m", vy = H +«m'7. It follows from the choice of their
tails that m and m’ belong to the W stability class P+, which allows us to define u, v by

u(t,x) = (H * S{m)(x), v (t,z) := (H = S{m')(z).
Combining (2.10) and the point (ii) of Proposition 8.1.7, we write, for ¢ > 0 small enough,

b—Lc, oot
/ Z|u”(t x) =7 (t,x)|dx < Z/ [@ (¢, ) — 07 (¢, z)|dx
T T€R

=a+Lc,ot y=1

We now define tmax := (b — a)/(2Lc,00) > 0 and introduce the space-time set

A= {(t,z) € [0,400) X R: ¢t < tmax, @+ Le,cot <& <b— L oot}
We shall check below that, for (¢,z) € A, w¥(t,z) = v (¢,x). By the same arguments, 77 (¢, z) =
v7(t,x), and the proof of Lemma 8.2.8 is completed.

Our argument depends on whether uj(a) = u(b™) or ug(a) < uj(b™). In the first case, applying
Corollary 5.1.2 to both u and u yields v (t,z) = uj(a) = wj(a) = w(¢t,x) for all (t,xz) € A. In
the second case, we let x(n) := x,m and X(n) := x,m. We first note that, by the Definition 2.6.4
of the discretisation operator, for all k € {1,...,n},

o if 2k+1)/(2(n+1)) <ug(a), then :vk( ) < a and T)(n) < a,
o if (2k—1)/(2(n+ 1)) > uj(b), then z] (n) > b and Z) (n) >
o ifuj(a) < (2k—1)/(2(n+1)) and (2k+1)/(2(n+1)) < uj (b~ ) thena <a}(n) =7 (n) <b.
In all the cases above, we define y)(n) := 2} (n) and 7 (n) := T} (n). Let us now assume that n is
large enough to ensure that b —a > 1/(n+ 1).
o If 2k —1)/(2(n+1)) < uf(a) < (2k+1)/(2(n + 1)), then 2} (n) < b and Z)(n) < b, and
we let y)(n) ==z} (n) Aa, 7} (n) =T (n) Aa.
o If (2k—1)/(2(n+1)) <u(b”) < (2k+1)/(2(n+1)), then x) (n) > a and T} (n) > a, and
we let y)(n) :=a)(n) Vb, gl (n) =T (n) Vb
There is no difficulty in checking that y(n) and ¥(n) are thereby uniquely defined in D¢, and that

2d(b — a) _ _ 2d(b — a)
be(m) —y(lls < 2= i) — gl < 20—,
so that, following the same arguments as in the proof of Lemma 8.2.7,
Sim = lim w/[y(n],  Sim= lim w/[y(ne)].
{—+oo —4o0
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According to the discussion above, for n large enough, for all v : k € P?
o if y/(n) < aor y)(n) > b, then 7} (n) satisfies the same inequality and, by the definition
of A, both ®](y(n);t) and ®}(¥(n);t) never intersect A;
e ifa <y (n) <b, then 7] (n) =y (n) and, as long as ®/(y(n); t) does not reach the bound-

n) =
ary of A, we have ®](y(n);t) = @) (¥ (n), t), while once the boundary of A is attained,

) =
neither @z(y(n); t) nor ®) (y(n) t) can reenter A.

We deduce that, in all cases, if (¢,2) € A, then ®](y(n);t) and ®](¥(n);t) have the same contri-
bution in H * u}[y(n)](z) and H x W[y (n)]( ). Taking the limit of this equality when n grows to
infinity, we conclude that (H % S{m)(x) = (H % S{m)(z), for all (¢,z) € A, which completes the
proof. O

8.3. Proof of Theorem 2.6.5. In this last subsection, we combine the results of Proposition 8.1.7
and Lemma 8.2.1 to complete the proof of Theorem 2.6.5.

Proof of Theorem 2.6.5. Let (S;)i>0 be given by Lemma 8.2.1. By (iii) in Proposition 8.1.7, it
is immediate that (gt)tzo satisfies the semigroup property (i) in Theorem 2.6.5. Besides, for all
m,m’ € P(R)?, either ng) (m,m’) < 400, in which case (ii) in Proposition 8.1.7 yields the
stability estimate (ii) of Theorem 2.6.5, or ng)(m, m’) = +oo and in this case, the right-hand
side of the stability estimate (ii) of Theorem 2.6.5 is infinite and therefore there is nothing to prove.

We now fix m € P(R)? and define u : [0,+00) x R — [0,1]¢ by u”(t,2) := (H * S, m)(z).
By Proposition 8.1.7, u is a probabilistic solution to (1.5) with initial data (ud,...,ud) defined
by uyg = H * m”. Besides, by Lemma 8.1.5 and Proposition 4.3.1, the sequence of empirical
distributions p[y,m] is tight in M. By Proposition 8.1.7 and Lemma 8.2.1, all the converging
subsequences have the same limit

~1

ﬁ[m] =Uo (ul(t, ~)71, . ,ud(t, ')71)1520 s

so that u[x,m] converges weakly to fi[m] in M. O

Appendix and references
Appendix A. Proofs of technical results

A.1. Proofs of Propositions 3.2.8 and 3.2.9. This subsection contains the proofs of Proposi-
tions 3.2.8 and 3.2.9, which were stated in §3.2.3 and describe some continuity properties of the
trajectories of the MSPD.

Proof of Proposition 3.2.8. We prove by induction on N(x) that
(i) the process (®(x;t));>0 has continuous trajectories in DY,
(ii) for all s,¢ > 0, ®(x;s+t) = D(D(x; 5);t).
Let x € D? such that N(x) = 0. Then, by Definition 3.2.5,
VE>0,  B(x:t) = DA (x;1),

and (i) follows from the continuity of the trajectories of (®[A(x)](x;t))i>0. Now, for all s,¢ > 0,
(x5 s +1) = PIA(x)](x;5 + 1) and (x;5) = [A(x)](x;5) =: x". By Corollary 3.2.4, N(x') =0
and A(x') = A(x). Hence,

O(D(x;5);t) = D(x'; 1) = DA (x'; 1) = DA (R[AX)](x5); 1),
[ (x )]( ))t>0 yields
A (PAX)](x;5); 1) = PAX)] (x5 + 1) = D(x; 5 + 1),

and the flow property for (®

which results in (ii).

Now let N > 0 such that, for all x € D¢ with N(x) < N, (i) and (ii) are satisfied. Let x € D
with N(x) = N + 1. In particular, N(x) > 1 so that t*(x) < +oo, and for all ¢ € [0,t*(x)),
®(x;t) = P[A(x)](x;1). As a consequence, the function ¢ — ®(x; 1) is continuous on [0, t*(x)). On
the other hand, since N(x*) < N(x) = N+1, the function ¢ — ®(x;t) is continuous on [t*(x), +00).
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Therefore it remains to prove that the function ¢ — ®(x;t) is left continuous at the point t*(x),
where, by definition, it takes the value

O(x;t%(x)) = d(x";t"(x) — t*(x)) = x¥,
and we recall that, by definition, x* = ®[A(x)](x;t*(x)). As a consequence, the continuity of the

trajectories of (P[A(x)](x;t))r>0 yields

lim ®(x;¢) = lim ®[Ax)](x;t) = x* = B(x;t*(x)),
Jim B0xt) = Tm AGO]Gx) (x;£° ()

which is the expected result.
We finally address (ii). Let s,t > 0.
Case s > t*(x). Then s+t > t*(x), so that, by Definition 3.2.5,

D(x;s+t) =P(x" 55+t —t*(x)) = P(x*;8 + 1),
where s := s — t*(x) > 0. Since, by Corollary 3.2.4, N(x*) < N(x), then the flow property for
(D(x*;t))e>0 yields B(x*; s'+1) = P(P(x*; ¢);t) = P(P(x*; s—t*(x)); ¢) and, using Definition 3.2.5
again, ®(x*;s — t*(x)) = ®(x;s). As a conclusion, (x;s +t) = D(P(x;);t).
Case s < t*(x). Then we write x' := ®(x; s) = ®[A(x)](x; s), and recall that, by Corollary 3.2.4,
A(x') = A(x) and t*(x’) = t*(x) — s. By Definition 3.2.5,
PIN(x)] (X't if t < t*(x),
i) { PRI i< )
O(x"t—t*(x")) ift >t (x).
Ift < t*(x') = t*(x) — s, then combining the flow property for (®[A(x)](-;t))¢>0 with the equality
A(x) = A(x), we obtain
PAX)](x';t) = R (RIAX)](x; 5); 1) = DA (x3 5 + 1),

and, since s +t < t*(x), the right-hand side above is worth ®(x;s + ¢).
If t > t*(x') = t*(x) — s, then by Corollary 3.2.4, x"™* = x*, therefore it is straightforward that

D(x'st) = d(x*t —t*(x) = P(x*; s+t — t7(x)) = P(x; 5 + ).
In both cases, we conclude that ®(P(x; s);t) = ®(x';t) = ®(x;s + t), which is (ii). O
Before detailing the proof of Proposition 3.2.9, we first define
t(x) ;= inf{t > 0: N(®(x;¢)) = 0}.

Certainly, if N(x) = 0 then #(x) = 0, otherwise ¢(x) > 0, and an upper bound on #(x) can be
derived as follows.

Lemma A.1.1 (Bound on #(x)). Under Assumptions (C) and (USH), for all x € D¢ such that
N(x) > 0,

(A1) f(x) <

< sup{x? —z¥ (a:i,6:7) € R(x)} < 4o0.
Lusn

Proof. Let x € DZ. For all t > 0, we have t > £(x) if and only if N(®(x;t)) = 0, which is equivalent
to the fact that, for all (a:i,8: j) € (P4)? with a < 83,

O (x5) > @ (x;1),
that is to say,

t
/70(vf‘(x; s) — Uf(x; s))ds > :Ef -z,
Recall that, by (3.10) and Assumption (USH), since the left-hand side above is larger than ¢ Lysy,

then a sufficient condition for this inequality to hold is that t > (:Ef — x§)/Lyswn, which yields the
bound (A.1). O

Recall the Definition 7.1.4 of the dense open set D C D4.

Lemma A.1.2 (Properties of D). The set D has the following properties.
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(i) For all x € D, there exists 1 > 0 such that, for all' y € Bi(x,7n), we have y € D and

R(x) = R(y).
(i) The function t* defined in (3.8) is continuous on the set {x € D : N(x) > 1}.

Proof. Let x € D. Let
1
n = ominflaf — o), (00,61 ) € (PO < B} >0

Let y € B1(x,7). Then, in particular, for all a : i € P, ¢ — y®| < nm. Let (a: 4,8 :7) € (P%)?
with a < S.

If (:4,8:j) € R(x), then :Cf — % > 3nn. Since |x? —y]5| < nn and |z§ —y$| < nn, we deduce
that yf — y& > nn so that yf >y® and (@ :4,6:7) € R(y).

Likewise, if (a : 4, 5 : j) &€ R(x), then xf‘—x? > 3nnand yf‘—yf > nnsothat (a:4,8: ) € R(y).

As a conclusion, R(x) = R(y) and y € D.

We now prove that the function t* is continuous on the set {x € D : N(x) > 1}. Let us fix a
configuration x in this set. Let (yx)r>1 be a sequence converging to x in DZ. By the first part of
the lemma, there is no loss of generality in assuming that, for all k£ > 1, ||x — yx||1 < 1, where 7
is defined in the first part of the proof, so that R(yx) = R(x). This allows us to write

t*(yx) = min{%&?ﬁ}ﬁ;j(}’k% (a:i,8:7) € R(x)}.
Let us fix (@ : 4,08 : j) € R(x). We denote 7, := %g?j}ﬁ;j(yk) and prove that limy_ioo 7% =
~coll

Towip.;(X). On the one hand, the sequence (7x)x>1 is bounded. Indeed, combining Lemma A.1.1

with the fact that R(yx) = R(x) and ||x — y&||1 < 71, we obtain

T < (|2 = 2| +n).

Lysn
On the other hand, let 7 > 0 refer to the limit of a converging subsequence of (73)r>1, that we
still index by k for convenience. For all y € D? and ¢ > 0, let

9(y: 1) = SJA)(y: 1) — A (y31),
so that, for all y € By(x,n), %gf’g}ﬂ:j (y) =t if and only if g(y,t) = 0. In particular, for all & > 1,
9(¥k, ) = 0, therefore
lg(x, )l = lg(x,7) = 9(yk: )| < l9(x,7) = g%, 70)| + [9(x, 70) = g(yr, k).

By the continuity of the trajectories of the flow (®[A(x)](:;t))t>0, |9(x, T) — g(x, 7)| vanishes when
k grows to infinity. Furthermore, Lemma 3.2.2 yields

Hlx.m) = gy, 7| < 1 BFAINx ) — DA ki)
+ LBIAG] 06 ) — BRG] s 7
< 9G] 5 7) — DRG] sl
<|[x—yxlh,

and the right-hand side also vanishes when k grows to infinity. As a conclusion, g(x,7) = 0 so that
=7l (x).

a:t,B:]
Thus, for all (a : 4,8 : j) € R(x), the function %g?}}ﬁ:j is continuous at x, and we complete
the proof by recalling that the minimum of a finite number of continuous functions remains a
continuous function. (I

For initial configurations x ¢ D, Lemma A.1.2 can be completed by the following lemma.

Lemma A.1.3 (Estimates on the collision times). Under Assumptions (C) and (USH), for all
x € D et

R'(x) :={(a:i,B:j) € (PD? < Baf =y)},
and let us define n’ >0 by

W= minflag — o] (0082 9) € (P%a < B, (0,8 ) € R'(),
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where we take the convention that ' = +oo whenever the minimum above is taken over an empty
set. Then, for all y € D& such that ||x — y||1 <n'Lusu/Lc.1,

inf{t > 0: R(®(y;1)) = R(x)} < LLHX ~vlh,
USH

while

sup{t > 0: R(®(y;t)) = R(x)} >

Proof. Let y € D® such that |[x — y|i < n'Lusu/Lci. Recall that Lysy < L1, so that
[|x —¥||l1 <7, which implies that

R(y) C R(x) UR/(x).

Let (a:4,8:7) € R(y)-
o If (a:4,0:j) € R'(x), then by Assumption (USH),

1 n
TS, (y) < Tom (W] — ) = Tom () —af +af —y?) < ol =vlh.
o If (a:4,0:7) € R(x), then by the boundedness of the velocities,
1 2nny’
coll B8 « B «@ / n
ol () > — (4 — ) > —(|2f — 29| — > .
Ta.z,B,] (Y) = LC,l (y] Y; ) - LC,I (|$] €Ty | nn ) = LC,I

Since the choice of y ensures that ||x — y||1/Lusa < 21'/Lc,1, we conclude that, on the time
interval [n||x — y||1/Luswu, 2nn’/Lc 1], we have R(®(y;t)) = R(x). O

We are now ready to prove Proposition 3.2.9.

Proof of Proposition 3.2.9. The proof works by induction on N(x).

Let us first fix € > 0 and x € DZ such that N(x) = 0. Let § > 0, and let y € B1(x,6). Then, in
particular, for all v : k € P4, |2] — y)| < nd. We shall study ||®(x;t) — ®(y;t)||1 on the intervals
[0,%(y)) and [t(y), +oc) separately.

If #(y) = 0 then the interval [0,%(y)) is empty. If (y) > 0, that is to say N(y) > 1, then we let
t €10,%(y)), and we have

d n t
1
1@(x;1) = D(yst)l[1 < llx =yl + - ZZ/ |07 (x;8) — v3 (5 5)|ds < 6+ 2Lt
y=1k=1"=0

Following Lemma A.1.1,

sup{y] —y&, (14,81 j) € R(y)}.

t <
) < Lusn

and, for all (a:4,8:j) € R(y),

gl =yt =y — ol a2l —af oy -y <o — oyl + 2 - yP| < nd,

where we have used the fact that N(x) = 0 so that xf < zf. As a consequence,

2n
sup [[00x1) ~ 0(y: Ol < (1+ oL ) 6
te[0,t(y)) USH

We now study ||®(x;t) — ®(y;t)||1 for t > #(y). Letting x' := ®(x;t(y)), y' := ®(y;i(y)) and
using Proposition 3.2.8, this amounts to studying ||®(x;t) — ®(y’; ¢)||1 for ¢ > 0. By the definition
of £, N(x') = N(y') =0, so that A(x’) = A(y’). Hence, for all ¢ > 0, Lemma 3.2.2 yields

[2(x";1) = 2(v"; Ol = [[RA)] (x5 8) = DIAC)I(¥5 )1 < [1x' —¥[]1.
Using the bound obtained on ||x’ — y’||; above, we finally deduce that

2n
supl[@(xit) ~ 00y Ol < (14 Lo ) &
>0 USH
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so that the conclusion follows from taking ¢ small enough for the inequality

2
(1 + i LC,l) 0<e
Lysu
to hold.

We now let N > 0 such that, for all x € D? such that N(x) < N, the conclusion of Proposi-
tion 3.2.9 holds. Let us fix e > 0 and x € D, such that N(x) = N + 1. We are willing to construct
§ > 0 such that, for all y € By(x,0),

sup [|®(x;1) — @(y; 1)1 < e
>0

First, by Corollary 3.2.4, N(x*) < N, therefore there exists 6* > 0 such that, for all y € D2, if
b — @(y;£* ()1 < 8", then

Sup [|@(x"; 1) — ®(2(y; " (x)); )L < e,

that is to say, thanks to the flow property stated in Proposition 3.2.8,
sup ||®(x;1) — R(y;1)|[1 <e.

> % (x)

We now prove that there exists § > 0 such that, for all y € Bi(x,0), supc(g ¢ (x) ||P(x;1) —
®(y;t)|l1 < eand [[x* — ®(y;t*(x))[l1 < 6*; which we shall actually do at once by constructing
4 > 0 such that, for all y € B;(x,d),

sup ||®(x;t) — P(y;t)|[1 < eAnd”.
te[0,t* (x)]
Lemma A.1.2, there exists n > 0 such

To this aim, we first assume that x € D. Then, by (i )~1
e A(x) = A(y) =: X. As a consequence, for

that, for all y € Bi(x,n), R(x) = R(y), and therefor
all t € [0,t*(x) A t*(y)],
e(x;t) = PN|(x;t),  B(yit) = B[N|(y; ),

so that Lemma 3.2.2 yields

vie [0, ") At (y)l,  l12058) = 2(y;t)ll < [lx —ylh-
Letting x’ := ®(x;t*(x) A t*(y)), ¥ := ®(y;t*(x) At*(y)), one still has the trivial bound, for all
te [t*(x) At*(y), t* (x)],

l0(x;2) — @(y: )|l < [[x" = ¥'|lh + 2Lea(t — 7 (x) At*(y))

<x=ylh +2Lealt"(x) =t (y)l.

As a conclusion, for y € D¢ such that ||x —y||1 < n,

sup ||®(x;t) — D(y; )|l < [lx =yl + 2Lcalt™(x) — 7 (y)l.

te[0,t*(x)]

By Lemma A.1.2, there exists 6 > 0 such that, for all y € DZ such that ||x — y||1 < &, the
right-hand side above is lower than € A §*. This completes the proof of the case x € D.

Without assuming that x € D, we proceed as follows. Let ' > 0 be given by Lemma A.1.3.
Let us note that, since N(x) > 1, then ' < +oo. Besides, the proof of Lemma A.1.3 shows that
t*(x) > 3nn’'/Lc1. Let us denote
/

2
2L (0, (x)).
Lc

Then ®(x;t') € D, and R(®(x;t')) = R(x). As a consequence, using the argument above, we
obtain that there exists ¢’ > 0 such that, for all y € DZ such that ®(y;t') € By (®(x;t'),d’), then

sup ||®(x;t) — P(y;t)||1 < eAd”.
tet t* (x)]

=

Now, for all y € D¢ such that ||x — y||1 < nn'Lysu/Lc.1, then
=inf{t > 0: R(®(y;t)) = R(x)} < ¥/,
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and

L¢
sup [|@(x;t) — (y;t)|[y < [|x —ylh +2Lcat” < <1+2nL ) IIx =yl
te[0,] USH

where the bound on ¢ follows from Lemma A.1.3. On the other hand, using Lemma A.1.3 again, we
obtain that, on the time interval [¢”,¢'], R(®(y;t)) = R(x) = R(®(x;t)), therefore by Lemma 3.2.2,

L
sup [|@(x;1) — (y;1)[l1 < [[2(x;2") — (y:t")|s < (1 +2m ) [ =yl
teft’ t'] USH

As a consequence, letting

§ := min (nn’ Lusu N )
' Lea ' 14 2nLey/Lusu )’

we conclude that, for all y € B;(x,J),
le(x;t) — @(y; )| < 0,

while

sup |[®(x;t) — (y;t)|[1 <,
te(0,t]

which completes the proof. (I

A.2. Proof of Proposition 4.1.1. Before proving Proposition 4.1.1, we state and prove the
technical Lemmas A.2.1 and A.2.2.

Lemma A.2.1 (An extended change of variable formula). Let £:[0,1] x R — R be a measurable
and bounded function, and F be a CDF on the real line. Then

(A.2) /IGR /0_0 ((1=0)F(z7)+ 0F(x),z)d0dF(x) = L_o L(v, F~"(v))dv.

Proof. Let us split the integral in the left-hand side of (A.2) in two parts, depending on whether
AF(xz) =0 or AF(z) > 0. On the one hand, using Lemma 2.3.5

/ / Liar -0 (1~ )F(x™) + 0F(x), 2)d0dF (z) = / 1 aF ()=o) {E(2), 2)dF ()
z€R JO=0 z€R

- / a0, @),

and it follows from (ii) in Lemma 2.3.4 that, if AF(F~!(v)) = 0, then F(F~!(v)) = v. As a
consequence,

1 1
/zeJR /0:0 Liar(@)=03l((1 = 0)F(27) + 0F (z), x)d0dF (z) = /U LiarF-—1(v)=0}¢(v, F_l(v))dv.

On the other hand,
1
/ / Liarysop (1 — O)F(z™) + 0F (), 2)d6dF ()
z€eR JO=0

= / L{aP(F-1(v)>0} / U= OF(F~ (v)7) + 0F (F~ (v)), F~ (v))dvdd
v=0 0=0

) . (P ) 1
= 1 —1(y —_— L(w, F~(v))dwdw
/J:o IAPER OO AR(F1 () /w_F(Fl('u)) ( ®)

{(w, P~ (v))
= 1 —1(p “1()=)<w 1) —————dwdv.
/J_O/_O (ARG @)>0.F (F=1 () ) <w< PR )} A B (F1 ()

The key observation here is that, if v € (0,1) is such that AF(F~1(v)) > 0, then, for all w such
that

F(F~(v)7) <w < F(F~(v),
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one has F'~ F~1(v). As a consequence, the right-hand side above rewrites

H(w)

1
l(w, F~ 1 (v))
/ Liar-2@)>0.P(P-1()7) <ws P10} A F (=1 () TV

> o

l(w, F~1

(w))
_ 1 “1(y 1) =)< 1w dwdv
o /w:O {AF(F=H(w))>0,F(F~!(v) ") <w<F(F~( ))}AF(F_l(w))

1 —1 1
{(w, F~ ! (w))
= Lare=1@)=0 ApiFTr) /70 Lip(p=1(0)-)<w<F(p-1 () dvdw.

w=0

We now complete the proof by checking that, dw-almost everywhere, if AF(F~*(w)) > 0 then

1
/O Lp(r-1(0)-)<w<r(F-1())dv = AF(F~H(w)).

To this aim, we note that for all w € (0,1) such that AF(F~!(w)) > 0,

1
/O1{F<F*1<v>*><w§F<F*1<v>>}dU=/ R“{F<r><wSF<m>}dF(9ﬁ)
V= xEe

= Y Ipe-)cwsre)AF(),
:AF(z)>0
where we have used Lemma 2.3.5 at the first line.
Recall that, by (ii) in Lemma 2.3.4, F(F~1(w)™) < w < F(F~Y(w)). As a consequence, if w
is not taken from the countable set of values of F(x~) when x is an atom of dF', then the sum
above contains exactly one positive term, which corresponds to # = F~!(w) and therefore writes

AF(F~(w)). O

Lemma A.2.2 (Convergence of composed CDFs). Let (F),)n>1 and (Gp)n>1 be two sequences of
CDFs on R and F' and G be two CDFs on R, such that:

o for all x € R such that AF(x) =0, lim,— 1 Fp(x) = F(z),

o for all x € R such that AG(z) = 0, lim, 1o Gy () = G(),

o for allz € R, AF(2)AG(z) =
Then, dv-almost everywhere,

im Gu(F @)= CGFTW)  and Jm Ga(FN(0)T) = G W),
Proof. By Lemma 2.3.6, F;!(v) converges to F~!(v), dv-almost everywhere in (0,1). We now
check that, for all z € R such that AG(x) > 0, the set {v € (0,1) : F~1(v) = z} is negligible with
respect to the Lebesgue measure on (0,1). Since the function F~! is nondecreasing, this set is an
interval, and if there exist v < ¥ such that F~!(v) = F71(¥) = z, then F(27) < v <7 < F(x),
which is a contradiction with the fact that AF(z2)AG(x) =
As a consequence, dv-almost everywhere, F;}(v) converges to F~!(v) and AG(F Ltw)) =
Let us fix v € (0,1) satisfying these two conditions, and write G,,(F,;*(v)) = G,(F~ (v
Gn(F1(v)) — Gn(F~1(v)). On the one hand,
. —1 -1
im Ga(F7 () = G (),

since AG(F~!(v)) = 0. On the other hand, by the Dominated Convergence Theorem, for all € > 0,
there exists § > 0 such that

~—

/ Lip-1(v)—s<a<r-1(v)+5)dG(z) <€
z€eR

Besides, for n large enough, F; *(v) € (F~!(v) — 8, F~1(v) + §), so that

|Gn(F, ' (v) = Gu(F~H(v))] < / Tip-1(0)—s<a<r1(v)+6}dGn ().
zeR
We now deduce from the characterisation of weak convergence on closed sets in the Portmanteau
Theorem [3, Theorem 2.1, p. 16] that
limsup |Gy (F;H (v) = Gu(F7H(v)] < €,

n—-+o0o
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which completes the proof of the first assertion.

To prove the second assertion, we follow the same arguments and first show that G,,(F~1(v)™)
converges to G(F~1(v)~) — which, in fact, is G(F~*(v)). To this aim, we take ¢ small and such
that AG(F~!(v) —€) =0, so that

G(F(v) —¢) <liminf G, (F~(v)") < limsup G, (F~ 1 (v)7) < G (F~*(v)),

n—+00 n—-+oo

and, since e can be chosen arbitrarily small, the result follows from the fact that AG(F~1(v)) =
The sequel of the proof is identical to the first case.

o<

We are now ready to prove Proposition 4.1.1.

Proof of Proposition 4.1.1. Let (uy)n>1 and u satisfy the assumptions of Proposition 4.1.1. Let
us fix ¢ = (p',..., 9% € CLO([0,+00) x R,R?) and v € {1,...,d}. For all t > 0, the set of points
z € R such that Azu"(¢,2) > 0 is at most countable, therefore da-almost everywhere, u} (¢, x)
converges to u”(t,x). By the Dominated Convergence Theorem, we deduce that

+oo
lim / O (¢, z)w) (¢, )dzdt —|—/ ©7(0,2)ug , (x)dx
= T€R

n=+o0 Ji—o z€R
—+oo
:/ / 8t<p7(t,x)uv(t,:v)dxdt+/ ©7(0, z)uf (x)dz.
t=0 T€R T€R

The main difficulty of the proof actually lies in checking that
(A.3)

nll}r_{loo / Y(t, )N {u, ¢, x)du) (¢, 2)dt = /t / Y(t, )N {u}(t, x)du (¢, z)dt.

In the scalar case, (2.4) yields, for all ¢ > 0,

/eR (t, 2)Mup }(t, 2)dpun (¢, ) / O p(t, ) A(uy (t, x))dz

and, similarly,

/ o(t, ) Mul(t, v)dult, x) / O p(t, z)A(u(t, z))dz,
z€R

so that the limit (A.3) is easy to obtain, at least for test functions having a continuous partial
derivative J, .

In the general case, Lemma A.2.1 above allows us to rewrite (A.3) under the following equivalent
form:

nll)rfoo / (tu) (@t ) @) N (up B ul () (@), cud (t,u)(t, )7 (v))) dvdt
/t / (tu(t, )" (W) A (uh (w7 (t, )T (), ., Jud(t,u(t, )7 (v))) dodt.

By the Dominated Convergence Theorem and thanks to the continuity of the functions ¢7(¢, ) and
A7, this identity follows if we first prove that, d¢-almost everywhere, dv-almost everywhere, for all

v,y €{1,...,d} with v #+/,

lim w)(t,-) " (v) =u(t,-) " (v) lim u'y (tul(t, )" (v) = u’ (t,u(t, )" (v)) .

)
n—-+o0o n——+o0o

These equalities are obtained by applying Lemma A.2.2 above at all times ¢ such that
Vo € R, Agul (t, ) Agul (t,2) = 0.

On account of Condition (4.1), this is the case d¢-almost everywhere, which completes the proof. [
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A.3. Proof of Lemma 7.3.3. We now detail the proof of Lemma 7.3.3, which asserts that the set
of good configurations G is dense in D¢ under Assumptions (C) and (USH), and Condition (ND).

Proof of Lemma 7.3.5. Let us begin the proof by recalling the chain of inclusions
GcDc Dl

and that D is dense in DZ. As a consequence, it suffices to prove that, for all x € D, for all € > 0,
there exists y € G such that ||x — y||1 < e. The reader will not be surprised that the proof works
by induction on N(x).

If x € D and N(x) = 0, then x € G and there is nothing to prove. Now let N > 0 such that any
x € D with N(x) < N belongs to the closure of G. Let x € D with N(x) = N + 1; in particular,
t*(x) < 4+o00. Let us fix

t*(x) < t' <t <t'(x)+t"(x"),

such that, in the MSPD started at x, there is no self-interaction on the time interval (¢*(x),t"),
see Figure 8.

t”

N
4\

t*(x)

t=0

FIGURE 8. The choices of ¢’ and ¢” to ensure that, on the time interval (¢*(x), "],
there is neither a self-interaction nor a collision in the MSPD started at x.

We shall prove in Step 1 below that, for all € > 0, there exists x’ € Bi(x,€) and s’ € (0,t*(x))
such that:
e in the MSPD started at x’, there is no self-interaction on the time interval [s', t*(x)],
e for all t > t*(x), D(x;t) = O(x';¢t).
As a consequence, we shall assume, without loss of generality, that x satisfies the following property:
there exists s’ € (0,¢*(x)) such that, in the MSPD started at x, there is no self-interaction on the
time interval [/, t*(x)], see Figure 9.

t=20

FIGURE 9. The shrinking of particles having a self-interaction at time t*(x) allows
to select 8" < t*(x) such that there is no self-interaction on the time interval s, t"].

Then, arguing as in the proof of Lemma 7.3.6, there exists ¢y > 0 such that, for all y € B1(x, ),
(1) y € D and R(y) = R(x),
(2) ®(y;s’) € Dand R(®(y;s')) = R(P(x; s)), which implies that, in the MSPD started at y,
there is no collision on the time interval [0, '],
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(3) for all v : k € P2, clu)(y; 8') = clu](x; 8),
(4) o(y;t')eD and R(@(y;t')) R(®(x;t')), which implies that

{(a:i,8:]) €R(x) : 780055 (x) € [t (x), 1]} = {(a:i,8: ) €R(Y) : 780055 (y) € (5", )}
i.e. the collisions in the MSPD started at x on the time interval [t*(x), ] (or, equivalently,
(s',t)) involve the same pairs of particles as the collisions in the MSPD started at y on
the time interval (s',t'),

(5) ®(y;t") € D and R(®(y;t")) = R(P(x;t")), which implies that, in the MSPD started at
y, there is no collision on the time interval [/, "],

(6) for all v: k € P2, clu](y;t") = cluj(x;t”), which implies that, in the MSPD started at y,
there is no self- mteractlon on the time interval [, t"].

Let us fix € € (0, €o]. The sequel of the proof is as follows: in Step 2, we construct yo € B (x,€/2)
such that, in the MSPD started at yo, the collisions on the time interval [0,¢”] (or, equivalently,
(s',t")), are binary. Of course, ||x — yo||1 < €, therefore yq satisfies all the conditions above; in
particular, in the MSPD started at y(, the self-interactions are separated from collisions on the
time interval [0,¢”]. In Step 3, we show that there exists n € (0, /2] such that, for ally € B1(yo,7),
the collisions on the time interval [0,¢”] in the MSPD started at y remain blnary In Step 4, we
construct 1’ > 0 such that, for all y’ € Bq(®(yo;t'),n’), there exists y € Bi(yo,n) such that
(I)(y 7tll - /) (I)(yvtll)'

Taking the result of these four steps for granted, let us explain how to complete the proof. By
construction, the collisions in the time interval [0,¢'] in the MSPD started at yo are binary and
separated from self-interactions. Besides, N(®(yo;t')) = N(®(x;¢')) < N, therefore there exists
y' € B1(®(yo;t'),n’) such that y' € G. Let y € Bi(yo,n) be given by Step 4. Then, on the one
hand,

€
Ix =yl < [lx =yolh +lyo —ylh < 5 +n <
while, on the other hand,

e since y € Bi(yo,7n), the collisions are binary and separated from self-interactions on the
time interval [0,¢”] in the MSPD started at y,
e since y' € G, the collisions are binary and separated from self-interactions in the MSPD
started at O(y';¢" —t') = O(y;t").
As a consequence of the flow property for the MSPD, y € G and the proof is completed.
Let us now give a detailed proof of Steps 1 to 4.

Step 1. We separate self-interactions from collisions by shrinking groups of particles involved in
self-interactions at time ¢*(x) around their centre of mass, as is depicted on Figure 9. Let us fix
€ > 0 and assume that there exist v € {1,...,d} and k < k such that

cluy (x; (%)) = clu%(x; t(x)=v:k -k, cluy (x;t7(x)7) # Clu%(x; t*(x)7),

that is to say, a self-interaction occurs at time ¢*(x) between the particles v : k,...,v : k. Let us
define

1 k
f=— Lt v
kE—k+1 Py
and denote by x” the configuration in DZ such that, for all v’ : k¥’ € P2,

o ik ke %
(IP)Z: — xk' / 1f vl k ¢ v E k,
(1= p)§ + px}, otherwise,

for all p € [0,1]. Then, it is easily seen that, for all v/ : k' € v : k- -k,
vt € [0,t], @Z: (xP;t) = @Z,, (x;t).
Besides, we claim that
(1) inf{t >0:®)(x";t) = fl)%(xp;t)} = pt*(x),
(2) for all k € {k,...,k}, for all t > pt*(x), ®) (x*;t) = ] (x";1),
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(3) for all k € {k,...,k}, for all t > t*(x), @] (x";1) = @] (x;1).
The first point is obtained by elementary geometry if there is no self-interaction between times 0
and t*(x). Otherwise, let c1, ..., ¢, denote the distinct elements of the set

{el] (x;t*(x)7), k € {k,...,k}}.

Let us recall that in the proof of Lemma 7.3.6, we made the observation that, in the Local Sticky
Particle Dynamics, the centre of mass travels at constant velocity whatever the composition of the
clusters. Applying this remark to each generical cluster ¢;, we write

t'(x) = inf{t > 0: @ (%;¢) = ®L(X; 1)},

where X is derived from x by the following procedure: for all i € {1,...,7}, for all v : k € ¢,
replace the coordinate z) in x with

. 1

IZ = m Z IZ/.

v vy:k'€c;

Then, in the MSPD started at %, the particles v : k, ...,7 : k do not have self-interactions between
times 0 and ¢*(x), so that the argument above yields

inf{t > 0: ®J(x7;1) = @%(ip;t)} = pinf{t > 0: ®)(X;t) = @%(5{; t)} = pt*(x),

where X” is derived from X in the same fashion as x” is derived from x. To complete the argument,
we now have to check that

inf{t > 0: @, (x7;1) = @1 (x";1)} = inf{t > 0: Q) (X";1) = PL(X"; )}

This follows from the fact that the operations mapping x to x and x to x” are commutative;
therefore the equality above is obtained by the same geometric arguments as in the case p = 1.
The second and third points above easily follow.
Finally, the configuration x” satisfies
l—p

e = x|y = —
n

M-

|€_IZ|5
k

Il
|

so that for p close enough to 1, ||x — x”||; < € while the self-interactions between the particles
v :k,...,7:k in the MSPD started at x” occur before pt*(x) < t*(x), without modifying neither
the trajectories of the other particles on [0, t*(x)], nor the trajectories of all the particles after t*(x)
with respect to the MSPD started at x. Applying the argument to the finite number of groups of
particles having a self-interaction at time ¢*(x), we conclude that there exists x' € Bi(x,¢€) and
s" € (0,t*(x)) such that, in the MSPD started at x’, there is no self-interaction in the time interval

[s', 7 (x)]-

Step 2. We now blow up the non-binary collisions by shifting the initial positions, as is described
on Figure 10. Let us assume that there exist

Y1 <<, T237

such that, in the MSPD started at x, a collision occurs at the space-time point (£*,¢*(x)) between
clusters of type 71,...,7,. Forall ¢ € {1,...,7}, let us denote by ¢; the cluster of type 7; involved
in the collision. For § > 0, let us define the configuration x?! as follows: for all v: k € P%,

{IZ ify:k&esU---Ucy,

(1)) =
k zl+0 ify:kecgU---Uc.

Note that
0,1 0
[l = x> s < —(les] + - + e ),
so that 6 can be chosen small enough to ensure that x%! € Bi(x, €), and therefore satisfies all the
conditions stated in the introduction of the proof. In particular, on the time interval [s',¢'], the

collisions in the MSPD started at x?! remain the same as in the MSPD started at x.
Then, it is straightforwardly checked that, in the MSPD started at x%!,
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e there is a binary collision between ¢; and co at the space-time point (£*,t*(x)),
e there is a collision between cg, ..., ¢, at the space-time point (£* 4 0, t*(x)),
o if 7; ; refers to the instant of collision between the clusters ¢; and c;, then

VjE{?),...,T}, If*(X)<T1)j<T27j.

More precisely, the boundedness of the velocities yields

0
2Lcy’

1,5 >t (x) +

while Assumption (USH) yields
6

Lusu
Let us now define the configuration x%2 by, for all v : k € P4,

(%)) ify:kdecaU---Ucy,

(291 + 0 (—2LC’1

Lysu
Then, the same arguments as above ensure that, for 8 small enough, in the MSPD started at x%2,

T2, < (%) +

0,2\y ._
T =
( )i —1) ifvy:k€cyU---Uc,.

e there is a binary collision between ¢; and ¢y at time ¢*(x),
e there are binary collisions between c3 and ¢y, then between c3 and co, at respective times
71,3 and 7o 3 such that

0
t*(X)<7’173<7’213§t*(X)+ s
Lusu
e all the collisions between clusters ci,c2,c3 on the one hand and c¢y,...,c,. on the other

hand occur after the time ¢*(x) 4+ 6/Lysn.

Iterating the argument, we finally construct a configuration x?"~2 such that
[x —x"2||, < C#

for some constant C' depending only on Lc 1, Lysua, n and d, and, for § small enough, in the
MSPD started at x?"=2, if 7; ; refers to the instant of collision between ¢; and c;, then, for all

JjEe{3,...,r},
Tj—2,j-1 S Tiy <Tpj < < Tj-1j.

We complete Step 2 by applying the argument to blow-up all the non-binary collisions, and finally
take 6 small enough for the resulting configuration yo to be such that ||x — yol|1 < €/2.

— N 72,3

94!

V2 V4
FiGURE 10. Blowing up the non-binary collisions: the left-hand figure represents
a collision involving four clusters 7y1,...,74. In the central figure, the clusters 73
and 4 are shifted on the right of a distance 6. In the right-hand figure, the cluster
~4 is shifted on the right in order to ensure that its first collision with one of the
three other clusters occurs after 73 3, therefore after all the collisions between the
clusters 71, v2 and 3. The minimal shift distance remains proportional to 6.

Step 3. We begin by noting that, for all € (0,¢/2], for ally € Bi(yo,n), ||x —y||1 < €0, therefore
y satisfies all the conditions stated in the introduction of the proof. In particular, in the MSPD
started at y, there is no self-interaction on the time interval [s’, ¢], while all the collisions occuring
on the time interval [0,¢”] actually occur on the time interval (s’,¢'), and they involve the same
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pairs of clusters than in the MSPD started at yg. By Step 2, it is known that the corresponding
collisions are binary in the MSPD started at yo. Let R refer to the subset of R(yg) defined by

R:={(a:i,0:j) € Rlyo) : 75%5,,(¥0) € (5',')} = R(¥0) \ R(®(yo;t))-

By Proposition 3.2.9, one can construct 7 € (0,¢/2] such that, for all y € Bi(yo,n), for all (a :
i,8:j) and (o' 1 @', B’ 1 j') € R, i E 5. 5(yo) # E0 g0 (Yo), then S5 (y) # E5% 1.5 (¥)-
This implies that, in the MSPD started at y, the collisions on [0, ¢'] are binary.

Step 4. By Condition (ND) and Lemma 7.3.2, there exists 7 > 0 such that, for all y’ €
Bi(®(yo;t'),m), for all v : k € Py,

clu) (y'; " — ') = clu) (yo; t").

Besides, by Lemma A.1.2, there exists 5 > 0 such that, for all y’ € B1(®(yo;t'),n5), R(y') =
R(®(yo;t')) and t*(y’) > t” — t/, which implies

(A.4) 2y s " =) = (yo: t")llr < [ly" = (yo: )]s,

thanks to Lemma 3.2.2.

For y’ € B1(®(yo;t'),n; Anb) and y” := ®(y';t"” —t'), we are willing to construct y, close to
Yo, such that ®(y;t"”) = y”. It is therefore necessary to describe how to follow the MSPD flow
backward, and we shall construct a process (¥(y”;s))sejo,¢—s) such that

Vs € [0,t" — ], D(U(y";s);t" —s)=y".

Of course, there is generically not a unique fashion to do so; since clusters containing several
particles in y” could split at any time s > 0. In order to ensure that U(y”;s) remains as close
as possible to ®(yo;t” — s), we define the backward dynamics (¥ (y”;s))sejo,¢7—s 50 that clusters
never split.

Let us carry this task out by defining the backward frozen dynamics independently of the setting
of the proof. Let z € D& and let cy,...,cy, refer to the partition of PZ into generical clusters such
that, for all v : k € PZ, the generical cluster ¢; containing v : k is the largest set of particles of
type v having the same position as « : k£ in the configuration z. The generical cluster ¢; shall be
called the frozen cluster of the particle v : k.

For all s > 0, we define the process (¥(z; s))s>o as follows. For all [ € {1,..., L}, the initial
velocity of all the particles in the frozen cluster ¢; is set to

(A.5) L > N(@).

Then, frozen clusters travel at constant velocity. When two frozen clusters of the same type collide,
they stick together and form a frozen cluster with velocity determined by conservation of mass and
momentum. When clusters of different types collide, say at time s*, they remain formed and the
new velocity of each cluster is given by (A.5), where z is replaced with ¥(z; s*) instead.

This backward frozen dynamics is generally not the MSPD with reverse characteristic fields —A;
since, in the latter dynamics, frozen clusters of a type v such that —9,A” > 0 would instantaneously
split. However, it can be interpreted as a variant of the MSPD, where the initial velocity of the
particle v : k in the frozen cluster ¢; is defined by (A.5) instead of —S\Z (z). This ensures that frozen
clusters do not split, and stick together at collisions with frozen clusters of the same type — which
we shall refer to as self-interactions for the backward frozen dynamics.

As a consequence, the proof of Proposition 3.2.9 can be slightly adapted to yield the following
statement: if z € D and s > 0 are such that, in the backward frozen dynamics started at z, there
is no self-interaction on the time interval [0, s], then for all € > 0, there exists § > 0 such that, for
all z’ € B1(z,6) having the property that the frozen clusters are the same in the configurations z
and z’, we have:

e there is no self-interaction in the backward frozen dynamics started at z’ on the time
interval [0, s], which implies that the frozen clusters are the same in the configurations
U(z;r) and ¥(z';r) for all r € [0, ],



Wasserstein stable semigroups solving diagonal hyperbolic systems with large data 105

e the following continuity property holds:

sup [[W(zir) — B(ar)s < e
rel0,s]
We shall refer to these two points as Property ().
Let us now come back to the construction of y , close to yo, and such that ®(y;t"”) =y”. Let
vi = ®(yo;t"”). Since there is no self-interaction in the MSPD started at y¢ on the time interval
[s',t"], it is straightforwardly checked that, for all s € [0,¢" — 5],

U(ygss) = 2(yoit” — s).
Let € > 0 to be precised below. Let § > 0 associated to e by Property (x), and let us define
n =mn] AnyAJ.
Let us now fix y' € B1(®(yo;t'),n’) and denote y” := ®(y’;¢"" —t'). Then the fact that 7’ < n} An}
implies that the frozen clusters are the same in the configurations y” and y{, and (A.4) combined
with n’ < ¢’ yield y” € Bi(y{,0). As a consequence, Property (*) ensures that: one the hand,
there is no self-interaction in the backward frozen dynamics started at y” on the time interval
[0,t" — §'], therefore
Vs € [0,t" — '], O(U(y";s);t" —s) =y";
on the other hand,

sup  [|[W(y";s) — U(yp;s)|l <e,
s€[0,t""—s']

which in particular implies that
[ (y";t" = s') = (yo; s)|L <.

Besides, the frozen clusters are the same in the configurations ¥ (y”;t” — s’) and ®(yo;s’).

Recall the construction of 7 > 0 carried out in Step 3. To complete the proof, it remains to fix
a value of € ensuring that, for all z € B (®(yo;s’), €) having the same frozen clusters as ®(yo; s’),
one can construct a configuration y € Bi(yq,n) such that ®(y;s’) = z, and apply the result to
z = U(y”;t" — s'). In other words, we now have to take self-interactions into account, which
was not the case for the backward frozen dynamics. On the other hand, since s’ < t*(yg), we do
not have to care about collisions between clusters of different types, therefore the problem can be
addressed cluster by cluster. This enables us to use the following trick: for all frozen clusters ¢ in

D(yo;s'), for all v : k € ¢, let us define
Yp = (Yo)g + he,
where
he =z — @] (yo; §')
does not depend on the choice of v : k in ¢. Then
lly = yolli <,

and by Proposition 3.2.9, € can be chosen small enough to prevent particles belonging to different
frozen clusters in ®(yy;s’) from colliding in the MSPD started at y. Under this condition, it is
easily checked that, for all s € [0, ], for all frozen clusters ¢ in ®(yq;s’),

Vy:ikee, — @l(y;s) =Pl(yo;s)+ he.
In particular, ®(y;s’) = z and we complete the proof by taking ¢ < n. O

A.4. Proof of Lemma 8.2.3. This subsection contains the proof of Lemma 8.2.3, which gener-
alises, in an adequate way in view of Lemma 8.2.7, the convergence results of the Sticky Particle
Dynamics to the entropy solution of the corresponding scalar conservation law of [16, 40].

Proof of Lemma 8.2.3. We first note that, on account of Assumption (C), Proposition 8.2.2 ensures
that the functions %!, ..., @ introduced in Lemma 8.2.3 are well defined and, for all t > 0, @7 (¢, -)
is a CDF on the real line. On the other hand, using the same arguments as in the proof of
Proposition 4.3.1, there is no difficulty in checking that the sequence (fi[x(n)])n>1 is tight in M.
Calling i, the limit of a converging subsequence and defining @2, (¢,x) := H * (fieo){ (), we shall
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show below that a2, (t,z) = @7(t,x), for all (t,z) € [0,+00) x R. By the same arguments as in
Remark 5.1.5, this allows to identify i, with [t and thereby completes the proof.

Let us fix n > 1 and v € {1,...,d}. For simplicity, we will denote x(t) := ®}[X(x(n))](x(n); ).
Let us define

ﬁ’x(taaj) = H * 1 Ht Zﬂ{wk (t)<z}»

and recall that, by Lemma 2.3.6, 4] (¢, x) converges to 4, (t, :1:) for all x € R such that A,a2 (¢, x) =
0. We also fix ¢ € [0,1], ¢ € CL1([0, +00) x R, R) such that ¢(¢,z) > 0 for all (¢,z) € [0, +00) x R,
and define the quantity

Ay, = /JCGR |@) (0, 2) — c|p(0, x)dx

[ (00 o) + sgntiy ) - ) (87302~ B0(0)) gl ) .

Since, for all ¢ > 0, @} (t,z) converges dz-almost everywhere to 42 (¢, z), and the function u —
sgn(u—¢)(A7(u) — A7(¢)) is continuous, the Dominated Convergence Theorem shows that A,, con-
verges to A defined as A,, but with @2 instead of @) . We will prove below that liminf, 4 A, >
0, which implies that the distribution 8;|a2, — ¢|+ 8, (sgn (@2, —¢)(AY (@2,) — A7 (c))) is nonpositive,
so that Proposition 8.2.2 ensures that u), = u".

Let us denote by ko the unique integer in {0, ...,n} such that (ko — 1)/n < ¢ < ko/n. We also
take the convention to define z((t) = —oco and x,41(t) = +0o. Then, letting

+oo
(t,z) = / ot y)d,

(:w

we have

/z |u"(0x)—c|<p0:vdx—2/x

ko—1 n
=3 (e ) @Om0) - .m0 + Y (£ - c) 00,00 - 0.0 0)

zx+1(0)

(0, z)dz

——c

:Ek(o

k=0 " iho N
1 ko 1 < 0
=3 0(0,@k(0) + — D7 (0, 24(0)) +2 <— - c) (0, 2k, (0))
k=1 k=ko+1

and similarly, for all ¢ > 0,

[ Jinn) — gt ayasa
T€R

ko n
— 2> ot + 2 X owltan)+2 (2 - ) dutt.an o),
k=1

k=ko+1

/ sgn(@l (t,z) — c) (]w (@) (t,z)) — M(c)) Bp(t, x)dzdt
x€R

¥ (iw (%) e (%)) Ouib(t, (1))

k=1

Py < () m(’“n1>)am<t,xk<t>>+z<m<’j5) R(e >>am<t,a:ko<t>>.

k=ko+1

As a consequence, we rewrite

:——ZAkn-i-— Z Agn + = Ako,nv

k=ko+1



Wasserstein stable semigroups solving diagonal hyperbolic systems with large data 107

where

Apn = (0, 21(0)) + /::0 <8t1/)(t,xk(t)) tn <AW (g) e <k—;1)> 3z¢(t,xk(t))) dr,

and
;C(),n = (k‘o - n0)¢(07$k0 (O))

+ /t+°° (50 =m0t a0+ (3 (1) =200 ) vt 00 )t

=0
On the other hand, we recall that, following (3.2), for all k € {1,...,n}, for all T > 0,
T

Y(T, 21(T)) = (0, 21(0)) +/ (O (t, 21 (1)) + v (8)0x1b(t, wx (1)) dt,

t=0

where v, (t) := v [\ (x(n))](x7 (n); t) with the notations of Subsection 3.2. Taking T large enough
for the left-hand side above to vanish for all k, we obtain

= /t :O ( (A7 (’:’) _ m(c)) ~ (ko — nc)un, (t)) Dt (t, o, (1) ).

We first note that, by the definition of A7, vy () and since |k — nc| < 1, we have

—+o0
Ay <2 sup [N(u |/ ot zh (1)),
uelo,1]¢

so that

lim A
n—+oco N ko,n

Let us now write
n

) ko
- Z Ak n + - Z Ak n — — /+0 (_ Zak,n(t) + Z ak,n(t)> aﬂ/’(ta xk(t))dt
= k=1

]i} ko+1 k=ko+1

apn(t) :=n ([w (S) A (k — 1)) — ug(t),

and denote by v : k- - - ko the cluster of the particle v : ko at time ¢ > 0. Grouping particles by
clusters, we have

with

Z ahn(t) = —n (m <ET‘1> - Mm) +i0_: N (x(n)),
k %Ham . (Am) A (%)) _ k_%lmx(n))’
while
~ ~ EO
(0 () (3)- 5, e
+ i (vko(t) S\Z(x(n))) - i (vko(ﬂ xZ(x(n)))
k=k, k=ko+1

The key point of the proof is now that, by the stability condition as is stated in Lemma 3.1.7, we
have

ko B ko B

> (o =Nem) <0, = > (v () = Nx(n) <o.

k=k, k=ko+1
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As a consequence,

ko
- Z ak,n(t) +
k=1

n

> ) < 10 = —n (B (2) - &0)) + k; 3 x(n))

n
k=ko+1
N ~ (ko LR
A1) —-A | — Al .
sn (-2 (2))+ ¥ R
Recalling the definition of A7 on the one hand, and rewriting

~ k/n 1 n 1 n
)\Z(x(n)) = n/;) N (E Z ]l{xi/(")<zl(")}’ ey Uy, E Z ﬂ{zz,(n)<zz(n)}> dv

=(k-1)/n k=1 k=1

k/n
—n [ X7 (b o (0] 0) 7 (0) sy vyt (1)~ (0)
v=(k—1)/n

with u,, , the empirical CDF of z} (n),...,2)(n) on the other hand, we get the estimation

1
[ ()] < n/_o A7 (uo((ug) ™ (@)7), -y uf(ug) T (v)))

- ) ) ) )
=N (uno((u o) T (V)7 g o (4 0) T () | do

Combining the assumption (x) made in the statement of Lemma 8.2.3 with the continuity of A7,

we deduce that the integrand above converges to 0, dv-almost everywhere. By the Dominated

Convergence Theorem, this implies that, for all t > 0,

k[) n
1 1
lim sup — (— E agn (t) + E akm(t)) < lim —1I,(t)=0.
k=1

n—+oo T k—ho 1 n—+oo n
=ko

Since 0,9 (t,x) = —é(t, z) <0, we finally deduce from Fatou’s Lemma that

ko n
1 1
.. 1t j : -+ § : >
lﬁglﬂ.lf < n A+ n Ak’”) 20,
k=1 k=ko+1

/
k}(),n

which, together with the uniform boundedness of | A}, . |, completes the proof. O

In the scalar case, the proof is shortened as the function A is nothing but the antiderivative A
of A. As a consequence, n(A(k/n) — A((k — 1)/n)) exactly coincides with the velocity Ay of the
k-th particle, so that the quantity I,,(t) in the proof above is already 0 for n fixed. This implies

1 1 &
_E ZAk,n + ﬁ Z Ak,n > Oa
k=1 k=ko+1

from which we can observe that if ¢ = ko/n, then A} = 0so that the Kruzkov entropy inequality
is satisfied by the discrete solution u, (¢, x). In particular, taking ¢ = 0 and ¢ = 1, we deduce
that wu, is a weak solution to the scalar conservation law (8.4). Following [14, Lemma 3.3|, if
the flux function A is concave, then u, actually coincides with the entropy solution to the scalar
conservation law with discrete initial datum w, (0, ).

Appendix B. Index of notations

The following table contains most of the notations used in this article. The last column refers
to the number of the subsection or of the paragraph in which the corresponding notation first
appears.

Symbol Meaning
d Size of the system 1.1
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u=(ul,...,u?) Vector of conserved quantities 1.1
A=A .000 Charactersitic fields 1.1
ug = (up,...,ud) Initial data 1.1
m = (m',...,m?)  Vector of probability measures corresponding to initial data 1.2
H « Convolution with the Heaviside function 1.2
A Flux function in the scalar case 1.2
P(E) Set of probability measures on F 1.4.3
M Set of probability measures on C([0, +00), R?) 1.4.5
w) Marginal distribution of u € M 1.4.5
7y Projection operator 1.4.5
Lc,y, Boundedness constant on A 2.1
Lic Lipschitz constant on A 2.1
Lysu Uniform strict hyperbolicity constant on A 2.1
vk Generical label of a particle in the MSPD 2.2
Pl Set of indices v : k 2.2
D, Configuration space for the Sticky Particle Dynamics 2.2
Dd Configuration space for the MSPD 2.2
X,¥,Z Generical configurations for the MSPD 2.2
D(x;t) Flow of the MSPD 2.2
AF(x) Jump of the CDF F at the point z 2.3
F1 Pseudo-inverse of the CDF F 2.3
U Lebesgue measure on [0, 1] 2.3
Au(t, ) Jump of the CDF wu(t, ) at the point = 2.3
u(t,-)~! Pseudo-inverse of the CDF wu(t, -) 2.3
A{u}(t, x) Velocity function in the definition of probabilistic solution 2.4.1
@ =(o4...,0% Test function in the definition of probabilistic solution 2.4.1
uix] Empirical distribution of the MSPD started at x 24.2
u[x] Vector of empirical CDFs of the MSPD started at x 2.4.2
x(n) Sequence of initial configurations approximating ug 2.4.2
o Limit of p[x(n)] 2.4.2
X, = (XL(®), ..., X4(t))i>0 Trajectories 2.4.3
(X(#))e>0 Probabilistic representation of solutions 2.4.3
[Ix —¥llp Normalised L? distance on D¢ 2.5
Ly, Stability constant 2.5
© 3Lyc/Lusu 2.5
Wp(m,m') Wasserstein distance between m and m/ 2.6.1
m Coupling of m and m’ 2.6.1
W](Dd)(m, m’) Distance on the Cartesian product P(R)¢ 2.6.1
Xn Discretisation operator 2.6.2
(St)i>o0 Semigroup of solutions 2.6.2
A=A, 0) Initial velocity vector for the Sticky Particle Dynamics 3.1.1
(B[N (x;1))e>0 Flow of the Sticky Particle Dynamics 3.1.1
clug [N (x;t) Cluster of the k-th particle in the Sticky Particle Dynamics 3.1.1
vk[N(x5t) Velocity of the k-th particle in the Sticky Particle Dynamics 3.1.1
e[ (x; ) Coordinates of the reflection term at the boundary of D, 3.1.1
Dk Configuration space for the Local Sticky Particle Dynamics 3.1.2
R(x) Pair of colliding particles in the MSPD 3.2
N(x) Cardinality of R(x) 3.2
w;ylk (x) Rank of 7 : k in the system of type ~' 3.2
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A (x) Initial velocity of 7 : k in the MSPD 3.2

A(x) Array of initial velocities in the MSPD 3.2

A(x) Array of initial velocities in the Typewise SPD 3.2.1
(B[A](x:1))¢>0 Flow of the Typewise SPD 3.2.1
7:2011 8:j X) Collision time between « : ¢ and 8 : j in the Typewise SPD 3.2.1
t*(x) First collision time in the Typewise SPD 3.2.1
x* Configuration at the first collision time 3.2.1
v (x;t) Velocity of v : k in the MSPD 3.2.2
c=v:k- -k Generical cluster 3.2.2
type(c) Type of the generical cluster ¢ 3.2.2
|e| Cardinality of the generical cluster ¢ 3.2.2
clul (x;t) Velocity of 7 : k in the MSPD 3.2.2
By(x,8), Bp(x,8)  Open and closed balls in D2 3.2.3
T;?}}B:j (x) Collision time between « : ¢ and /5 : j in the MSPD 3.24
Tk (%) Collision times of v : k in the MSPD 3.2.5
T~ A Tyr(x) Largest collision times of 7 : k on [0, 7)) 3.2.5
NI Bounds on the characteristic field \” 5.1

B A C! increasing bijection [0, 1] — [0, 1] 5.2

P Spreading constant for rarefaction coordinates 6.1

wr(9) Modulus of continuity of F’ 6.1

E(Cloil 5.5(x) = ( (x), 7'201“5 ;(x)) Space-time point of collision 7.1.1
Ieoll(x) Set of space-time points of collision 7.1.1
clul (x;t7) Left limit of a cluster 7.1.1
Isvc;lkfm o (X) Set of space-time points of self-interactions 7.1.1
el (x) Set of all space-time points of self-interactions 7.1.1
D Configurations with no collisions at initial time 7.1.2
g Good configurations 7.1.3
~ Equivalence relation on R(x) 7.2.1
C(x) Equivalence classes, or collisions 7.2.1
M(x) Number of collisions 7.2.1
c=axb Generical collision 7.2.1
E(x;¢) = (&(x;5¢), T(x;¢)) Space-time point of collision 7.2.1
Cyik(x) Ordered set of collisions involving 7 : k 7.2.1
T (%) Last collision time of v : k 7.2.1
dyi(t) Distance between @} (x;t) and @) (y;t) 7.2.2
(em)o<m<M Auxiliary system 7.2.4
(Em)o<m<M Total mass of the auxiliary system 7.2.4
D Forward shift of a function x: P¢ — {0,..., M} 7.2.4
M Space of specific functions p: P4 — {0,..., M} 7.2.4
L, (v:k) Set of type paths 7.2.5
F(g) Foot of a type path g 7.2.5
cm(9) Cluster in a type path 7.2.5
w;,. (g) Weight of the type path g 7.2.5
H,.(9) History of the type path g 7.2.5
Fe:0r (0¢,0-)-box around the space-time point 2 7.3.2
p* Shrinking factor allowing to keep Condition (LHM) 7.3.2
P+ W1 stability class 8.1.1
Wi (m,m’) Modified W distance 8.1.1
Tm] Limit of u[y,m] 8.1.3



Wasserstein stable semigroups solving diagonal hyperbolic systems with large data 111

(St)t>0 Semigroup on Py« 8.1.3
A7 Flux function in the Riemann problem 8.2.2
Ui;r,g Solution to the Riemann problem 8.2.3
UEm_’E Solution to the linearised problem 8.2.3
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