511 research outputs found

    Coherent control of population transfer between communicating defects

    Full text link
    Population transfer between two identical, communicating defects in a one-dimensional tight-binding lattice can be systematically controlled by external time-periodic forcing. Employing a force with slowly changing amplitude, the time it takes to transfer a particle from one defect to the other can be altered over several orders of magnitude. An analytical expression is derived which shows how the forcing effectively changes the energy splitting between the defect states, and numerical model calculations illustrate the possibility of coherent control of the transfer.Comment: 7 pages, 6 figures, to appear in Phys. Rev.

    Origin of Correlations between Central Black Holes Masses and Galactic Bulge Velocity Dispersions

    Get PDF
    We argue that the observed correlations between central black holes masses M_{BH} and galactic bulge velocity dispersions \sigma_e in the form M_{BH}\propto\sigma_e^4 may witness on the pregalactic origin of massive black holes. Primordial black holes would be the centers for growing protogalaxies which experienced multiple mergers with ordinary galaxies. This process is accompanied by the merging of black holes in the galactic nuclei.Comment: 6 pages, 1 figure, submitted to Astron. and Astrophys. Transaction

    Astrophysical constraints on primordial black holes in Brans-Dicke theory

    Full text link
    We consider cosmological evolution in Brans-Dicke theory with a population of primordial black holes. Hawking radiation from the primordial black holes impacts various astrophysical processes during the evolution of the Universe. The accretion of radiation by the black holes in the radiation dominated era may be effective in imparting them a longer lifetime. We present a detailed study of how this affects various standard astrophysical constraints coming from the evaporation of primordial black holes. We analyze constraints from the present density of the Universe, the present photon spectrum, the distortion of the cosmic microwave background spectrum and also from processes affecting light element abundances after nucleosynthesis. We find that the constraints on the initial primordial black hole mass fractions are tightened with increased accretion efficiency.Comment: 15 page

    Nonlinear cellular instabilities of planar premixed flames: numerical simulations of the Reactive Navier-Stokes equations

    Get PDF
    Two-dimensional compressible Reactive Navier-Stokes numerical simulations of intrinsic planar, premixed flame instabilities are performed. The initial growth of a sinusoidally perturbed planar flame is first compared with the predictions of a recent exact linear stability analysis, and it is shown the analysis provides a necessary but not sufficient test problem for validating numerical schemes intended for flame simulations. The long-time nonlinear evolution up to the final nonlinear stationary cellular flame is then examined for numerical domains of increasing width. It is shown that for routinely computationally affordable domain widths, the evolution and final state is, in general, entirely dependent on the width of the domain and choice of numerical boundary conditions. It is also shown that the linear analysis has no relevance to the final nonlinear cell size. When both hydrodynamic and thermal-diffusive effects are important, the evolution consists of a number of symmetry breaking cell splitting and re-merging processes which results in a stationary state of a single very asymmetric cell in the domain, a flame shape which is not predicted by weakly nonlinear evolution equations. Resolution studies are performed and it is found that lower numerical resolutions, typical of those used in previous works, do not give even the qualitatively correct solution in wide domains. We also show that the long-time evolution, including whether or not a stationary state is ever achieved, depends on the choice of the numerical boundary conditions at the inflow and outflow boundaries, and on the numerical domain length and flame Mach number for the types of boundary conditions used in some previous works

    Non-resonant wave front reversal of spin waves used for microwave signal processing

    Full text link
    It is demonstrated that non-resonant wave front reversal (WFR) of spin-wave pulses caused by pulsed parametric pumping can be effectively used for microwave signal processing. When the frequency band of signal amplification by pumping is narrower than the spectral width of the signal, the non-resonant WFR can be used for the analysis of the signal spectrum. In the opposite case the non-resonant WFR can be used for active (with amplification) filtering of the input signal.Comment: 4 pages, 3 figure

    Spherically symmetric space-time with the regular de Sitter center

    Full text link
    The requirements are formulated which lead to the existence of the class of globally regular solutions to the minimally coupled GR equations which are asymptotically de Sitter at the center. The brief review of the resulting geometry is presented. The source term, invariant under radial boots, is classified as spherically symmetric vacuum with variable density and pressure, associated with an r-dependent cosmological term, whose asymptotic in the origin, dictated by the weak energy condition, is the Einstein cosmological term. For this class of metrics the ADM mass is related to both de Sitter vacuum trapped in the origin and to breaking of space-time symmetry. In the case of the flat asymptotic, space-time symmetry changes smoothly from the de Sitter group at the center to the Lorentz group at infinity. Dependently on mass, de Sitter-Schwarzschild geometry describes a vacuum nonsingular black hole, or G-lump - a vacuum selfgravitating particlelike structure without horizons. In the case of de Sitter asymptotic at infinity, geometry is asymptotically de Sitter at both origin and infinity and describes, dependently on parameters and choice of coordinates, a vacuum nonsingular cosmological black hole, selfgravitating particlelike structure at the de Sitter background and regular cosmological models with smoothly evolving vacuum energy density.Comment: Latex, 10 figures, extended version of the plenary talk at V Friedmann Intern. Conf. on Gravitation and Cosmology, Brazil 2002, to appear in Int.J.Mod.Phys.

    Quantum Field Effects on Cosmological Phase Transition in Anisotropic Spacetimes

    Full text link
    The one-loop renormalized effective potentials for the massive Ď•4\phi^4 theory on the spatially homogeneous models of Bianchi type I and Kantowski-Sachs type are evaluated. It is used to see how the quantum field affects the cosmological phase transition in the anisotropic spacetimes. For reasons of the mathematical technique it is assumed that the spacetimes are slowly varying or have specially metric forms. We obtain the analytic results and present detailed discussions about the quantum field corrections to the symmetry breaking or symmetry restoration in the model spacetimes.Comment: Latex 17 page

    Preliminary studies for anapole moment measurements in rubidium and francium

    Full text link
    Preparations for the anapole measurement in Fr indicate the possibility of performing a similar measurement in a chain of Rb. The sensitivity analysis based on a single nucleon model shows the potential for placing strong limits on the nucleon weak interaction parameters. There are values of the magnetic fields at much lower values than found before that are insensitive to first order changes in the field. The anapole moment effect in Rb corresponds to an equivalent electric field that is eighty times smaller than Fr, but the stability of the isotopes and the current performance of the dipole trap in the apparatus, presented here, are encouraging for pursuing the measurment.Comment: 16 pages, 6 figures. Accepted for publication in the J. Phys.

    Dressed matter waves

    Full text link
    We suggest to view ultracold atoms in a time-periodically shifted optical lattice as a "dressed matter wave", analogous to a dressed atom in an electromagnetic field. A possible effect lending support to this concept is a transition of ultracold bosonic atoms from a superfluid to a Mott-insulating state in response to appropriate "dressing" achieved through time-periodic lattice modulation. In order to observe this effect in a laboratory experiment, one has to identify conditions allowing for effectively adiabatic motion of a many-body Floquet state.Comment: 9 pages, 4 figures, to be published in: J. Phys.: Conference Serie

    Emergence of a filamentary structure in the fireball from GRB spectra

    Full text link
    It is shown that the concept of a fireball with a definite filamentary structure naturally emerges from the analysis of the spectra of Gamma-Ray Bursts (GRBs). These results, made possible by the recently obtained analytic expressions of the equitemporal surfaces in the GRB afterglow, depend crucially on the single parameter R describing the effective area of the fireball emitting the X- and gamma ray radiation. The X- and gamma ray components of the afterglow radiation are shown to have a thermal spectrum in the co-moving frame of the fireball and originate from a stable shock front described self-consistently by the Rankine-Hugoniot equations. Precise predictions are presented on a correlations between spectral changes and intensity variations in the prompt radiation verifiable, e.g., by the Swift and future missions. The highly variable optical and radio emission depends instead on the parameters of the surrounding medium. The GRB 991216 is used as a prototype for this model.Comment: 9 pages, 3 figures, to appear on International Journal of Modern Physics
    • …
    corecore