201 research outputs found

    Robust nonparametric detection of objects in noisy images

    Full text link
    We propose a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of unknown distribution. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. In this paper, we develop further the mathematical formalism of our method and explore important connections to the mathematical theory of percolation and statistical physics. We prove results on consistency and algorithmic complexity of our testing procedure. In addition, we address not only an asymptotic behavior of the method, but also a finite sample performance of our test.Comment: This paper initially appeared in 2010 as EURANDOM Report 2010-049. Link to the abstract at EURANDOM repository: http://www.eurandom.tue.nl/reports/2010/049-abstract.pdf Link to the paper at EURANDOM repository: http://www.eurandom.tue.nl/reports/2010/049-report.pd

    A model of ant route navigation driven by scene familiarity

    Get PDF
    In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that do not specify when or what to learn, nor separate routes into sequences of waypoints

    Responsibility & Risk: Operationalizing comprehensive climate risk layering in Austria among multiple actors (RESPECT)

    Get PDF
    Damages caused by climate and weather extremes, such as floods and droughts, have increased over the last few decades and will likely broaden with the progression of climate change and socioeconomic development. Such climate-related risks are already being governed within the framework of natural disaster risk management, as well as climate change adaptation. However, to manage these climate risks more effectively it is necessary to link these two domains under the umbrella of Climate Risk Management (CRM)

    Climate Change and Human Health Impacts in the United States: An Update on the Results of the U.S. National Assessment

    Get PDF
    The health sector component of the first U.S. National Assessment, published in 2000, synthesized the anticipated health impacts of climate variability and change for five categories of health outcomes: impacts attributable to temperature, extreme weather events (e.g., storms and floods), air pollution, water- and food-borne diseases, and vector- and rodent-borne diseases. The Health Sector Assessment (HSA) concluded that climate variability and change are likely to increase morbidity and mortality risks for several climate-sensitive health outcomes, with the net impact uncertain. The objective of this study was to update the first HSA based on recent publications that address the potential impacts of climate variability and change in the United States for the five health outcome categories. The literature published since the first HSA supports the initial conclusions, with new data refining quantitative exposure–response relationships for several health end points, particularly for extreme heat events and air pollution. The United States continues to have a very high capacity to plan for and respond to climate change, although relatively little progress has been noted in the literature on implementing adaptive strategies and measures. Large knowledge gaps remain, resulting in a substantial need for additional research to improve our understanding of how weather and climate, both directly and indirectly, can influence human health. Filling these knowledge gaps will help better define the potential health impacts of climate change and identify specific public health adaptations to increase resilience

    Effect of Spatial Charge Inhomogeneity on 1/f Noise Behavior in Graphene

    Full text link
    Scattering mechanisms in graphene are critical to understanding the limits of signal-to-noise-ratios of unsuspended graphene devices. Here we present the four-probe low frequency noise (1/f) characteristics in back-gated single layer graphene (SLG) and bilayer graphene (BLG) samples. Contrary to the expected noise increase with the resistance, the noise for SLG decreases near the Dirac point, possibly due to the effects of the spatial charge inhomogeneity. For BLG, a similar noise reduction near the Dirac point is observed, but with a different gate dependence of its noise behavior. Some possible reasons for the different noise behavior between SLG and BLG are discussed.Comment: 28 pages, 3 figures + 3 supplement figure

    Using deep autoencoders to investigate image matching in visual navigation

    Get PDF
    This paper discusses the use of deep autoencoder networks to find a compressed representation of an image, which can be used for visual naviga-tion. Images reconstructed from the compressed representation are tested to see if they retain enough information to be used as a visual compass (in which an image is matched with another to recall a bearing/movement direction) as this ability is at the heart of a visual route navigation algorithm. We show that both reconstructed images and compressed representations from different layers of the autoencoder can be used in this way, suggesting that a compact image code is sufficient for visual navigation and that deep networks hold promise for find-ing optimal visual encodings for this task

    Visually Guided Avoidance in the Chameleon (Chamaeleo chameleon): Response Patterns and Lateralization

    Get PDF
    The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators

    Wave localization at the boundary of disordered photonic lattices

    Full text link
    We report on the experimental observation of reduced light energy transport and disorder-induced localization close to a boundary of a truncated one-dimensional (1D) disordered photonic lattice. Our observations uncover that near the boundary a higher level of disorder is required to obtain similar localization than in the bulk.Comment: 13 pages, 5 figures, to appear in Optics Letter
    corecore