11 research outputs found

    Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption

    Get PDF
    Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection

    Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies

    No full text
    High photon energy losses limit the open-circuit voltage (VOC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimiza- tion route is presented which increases the VOC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha-sexithiophene (α-6T) (D) and chloroboron sub- naphthalocyanine (SubNc) (A) increases the VOC of an α-6T/SubNc/SubPc fullerene-free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D–A interface. By accurately measuring the optical gap (Eopt) and the energy of the charge-transfer state (ECT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. Eopt – qVOC losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the VOC-optimized devices, the low-energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low-voltage losses can be combined with a high EQE in organic photovoltaic devices

    Hole Transport in Low-Donor-Content Organic Solar Cells

    No full text
    Organic solar cells with an electron donor diluted in a fullerene matrix have a reduced density of donor-fullerene contacts, resulting in decreased free-carrier recombination and increased open-circuit voltages. However, the low donor concentration prevents the formation of percolation pathways for holes. Notwithstanding, high (>75%) external quantum efficiencies can be reached, suggesting an effective holetransport mechanism. Here, we perform a systematic study of the hole mobilities of 18 donors, diluted at ∼6 mol % in C60, with varying frontier energy level offsets and relaxation energies. We find that hole transport between isolated donor molecules occurs by long-range tunneling through several fullerene molecules, with the hole mobilities being correlated to the relaxation energy of the donor. The transport mechanism presented in this study is of general relevance to bulk heterojunction organic solar cells where mixed phases of fullerene containing a small fraction of a donor material or vice versa are present as well

    Manipulating the Charge Transfer Absorption for Narrowband Light Detection in the Near-Infrared

    No full text
    Charge generation and recombination pro- cesses at interfaces between electron donating (donor, D) and accepting molecules (acceptor, A) are mediated by intermolecular charge-transfer (CT) states. Since organic photovoltaic and photodetecting devices rely on D−A interfaces, an understanding of the molecular and morpho- logical aspects governing CT state properties is crucial. In this paper, we synthesize a novel series of bi(thio)pyranylidene donor molecules and show how the interplay of molecular structure and energy levels in a D−C60 blend affect the line shape of the CT absorption cross section. By rationally designing the molecule 2,2′,6,6′-tetra-(2-methylthienyl)-4,4′- bithiopyranylidene, we achieve a 2 times stronger CT absorption peak than the literature-known molecule 2,2′,6,6′-tetraphenyl-4,4′-bipyranylidene when blended with C60. The low CT state energy combined with relatively strong CT absorption of this new material blend is exploited by fabricating near- infrared, cavity enhanced narrowband detectors. The photodetectors cover an impressive wavelength range from 810 to 1665 nm with line widths between 30 and 50 nm

    Hole transport in low-donor-content organic solar cells

    No full text
    Organic solar cells with an electron donor diluted in a fullerene matrix have a reduced density of donor-fullerene contacts, resulting in decreased free-carrier recombination and increased open-circuit voltages. However, the low donor concentration prevents the formation of percolation pathways for holes. Notwithstanding, high (>75%) external quantum efficiencies can be reached, suggesting an effective hole-transport mechanism. Here, we perform a systematic study of the hole mobilities of 18 donors, diluted at ∼6 mol % in C60, with varying frontier energy level offsets and relaxation energies. We find that hole transport between isolated donor molecules occurs by long-range tunneling through several fullerene molecules, with the hole mobilities being correlated to the relaxation energy of the donor. The transport mechanism presented in this study is of general relevance to bulk heterojunction organic solar cells where mixed phases of fullerene containing a small fraction of a donor material or vice versa are present as well

    Hole transport in low-donor-content organic solar cells

    No full text
    Organic solar cells with an electron donor diluted in a fullerene matrix have a reduced density of donor-fullerene contacts, resulting in decreased free-carrier recombination and increased open-circuit voltages. However, the low donor concentration prevents the formation of percolation pathways for holes. Notwithstanding, high (>75%) external quantum efficiencies can be reached, suggesting an effective hole-transport mechanism. Here, we perform a systematic study of the hole mobilities of 18 donors, diluted at ∼6 mol % in C60, with varying frontier energy level offsets and relaxation energies. We find that hole transport between isolated donor molecules occurs by long-range tunneling through several fullerene molecules, with the hole mobilities being correlated to the relaxation energy of the donor. The transport mechanism presented in this study is of general relevance to bulk heterojunction organic solar cells where mixed phases of fullerene containing a small fraction of a donor material or vice versa are present as well

    Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

    No full text
    Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to (1.45-1.65) eV, that is, (0.2-0.3) eV higher than for technologies with minimized non-radiative voltage losses
    corecore