157 research outputs found

    Representation of contralateral visual space in the human hippocampus

    Get PDF
    The initial encoding of visual information primarily from the contralateral visual field is a fundamental organizing principle of the primate visual system. Recently, the presence of such retinotopic sensitivity has been shown to extend well beyond early visual cortex to regions not historically considered retinotopically sensitive. In particular, human scene-selective regions in parahippocampal and medial parietal cortex exhibit prominent biases for the contralateral visual field. Here we used fMRI to test the hypothesis that the human hippocampus, which is thought to be anatomically connected with these scene-selective regions, would also exhibit a biased representation of contralateral visual space. First, population receptive field mapping with scene stimuli revealed strong biases for the contralateral visual field in bilateral hippocampus. Second, the distribution of retinotopic sensitivity suggested a more prominent representation in anterior medial portions of the hippocampus. Finally, the contralateral bias was confirmed in independent data taken from the Human Connectome Project initiative. The presence of contralateral biases in the hippocampus - a structure considered by many as the apex of the visual hierarchy - highlights the truly pervasive influence of retinotopy. Moreover, this finding has important implications for understanding how this information relates to the allocentric global spatial representations known to be encoded therein.SIGNIFICANCE STATEMENT:Retinotopic encoding of visual information is an organizing principle of visual cortex. Recent work demonstrates this sensitivity in structures far beyond early visual cortex, including those anatomically connected to the hippocampus. Here, using population receptive field modelling in two independent sets of data we demonstrate a consistent bias for the contralateral visual field in bilateral hippocampus. Such a bias highlights the truly pervasive influence of retinotopy, with important implications for understanding how the presence of retinotopy relates to more allocentric spatial representations

    The Glycerol-Dependent Metabolic Persistence of Pseudomonas putida KT2440 Reflects the Regulatory Logic of the GlpR Repressor

    Get PDF
    The growth of the soil bacterium Pseudomonas putida KT2440 on glycerol as the sole carbon source is characterized by a prolonged lag phase, not observed with other carbon substrates. We examined the bacterial growth in glycerol cultures while monitoring the metabolic activity of individual cells. Fluorescence microscopy and flow cytometry, as well as the analysis of the temporal start of growth in single-cell cultures, revealed that adoption of a glycerol-metabolizing regime was not the result of a gradual change in the whole population but rather reflected a time-dependent bimodal switch between metabolically inactive (i.e., nongrowing) and fully active (i.e., growing) bacteria. A transcriptional Φ(glpD-gfp) fusion (a proxy of the glycerol-3-phosphate [G3P] dehydrogenase activity) linked the macroscopic phenotype to the expression of the glp genes. Either deleting glpR (encoding the G3P-responsive transcriptional repressor that controls the expression of the glpFKRD gene cluster) or altering G3P formation (by overexpressing glpK, encoding glycerol kinase) abolished the bimodal glpD expression. These manipulations eliminated the stochastic growth start by shortening the otherwise long lag phase. Provision of glpR in trans restored the phenotypes lost in the ΔglpR mutant. The prolonged nongrowth regime of P. putida on glycerol could thus be traced to the regulatory device controlling the transcription of the glp genes. Since the physiological agonist of GlpR is G3P, the arrangement of metabolic and regulatory components at this checkpoint merges a positive feedback loop with a nonlinear transcriptional response, a layout fostering the observed time-dependent shift between two alternative physiological states

    Inclusive Electron Scattering from Nuclei at x1x \simeq 1

    Get PDF
    The inclusive A(e,e') cross section for x1x \simeq 1 was measured on 2^2H, C, Fe, and Au for momentum transfers Q2Q^2 from 1-7 (GeV/c)2^2. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit ξ\xi-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.Comment: 4 pages, RevTeX; 4 figures (postscript in .tar.Z file

    A Study of the Quasi-elastic (e,e'p) Reaction on 12^{12}C, 56^{56}Fe and 97^{97}Au

    Full text link
    We report the results from a systematic study of the quasi-elastic (e,e'p) reaction on 12^{12}C, 56^{56}Fe and 197^{197}Au performed at Jefferson Lab. We have measured nuclear transparency and extracted spectral functions (corrected for radiation) over a Q2^2 range of 0.64 - 3.25 (GeV/c)2^2 for all three nuclei. In addition we have extracted separated longitudinal and transverse spectral functions at Q2^2 of 0.64 and 1.8 (GeV/c)2^2 for these three nuclei (except for 197^{197}Au at the higher Q2^2). The spectral functions are compared to a number of theoretical calculations. The measured spectral functions differ in detail but not in overall shape from most of the theoretical models. In all three targets the measured spectral functions show considerable excess transverse strength at Q2^2 = 0.64 (GeV/c)2^2, which is much reduced at 1.8 (GeV/c)2^2.Comment: For JLab E91013 Collaboration, 19 pages, 20 figures, 3 table

    Measurements of Deuteron Photodisintegration up to 4.0 GeV

    Get PDF
    The first measurements of the differential cross section for the d(gamma,p)n reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in reasonable agreement with previous measurements at lower energy. The 89 and 69 degree data show constituent-counting-rule behavior up to 4.0 GeV photon energy. The 36 and 52 degree data disagree with the counting rule behavior. The quantum chromodynamics (QCD) model of nuclear reactions involving reduced amplitudes disagrees with the present data.Comment: 5 pages (REVTeX), 1 figure (postscript

    History of sentinel node and validation of the technique

    Get PDF
    Sentinel node biopsy is a minimally invasive technique to select patients with occult lymph node metastases who may benefit from further regional or systemic therapy. The sentinel node is the first lymph node reached by metastasising cells from a primary tumour. Attempts to remove this node with a procedure based on standard anatomical patterns did not become popular. The development of the dynamic technique of intraoperative lymphatic mapping in the 1990s resulted in general acceptance of the sentinel node concept. This hypothesis of sequential tumour dissemination seems to be valid according to numerous studies of sentinel node biopsy with confirmatory regional lymph node dissection. This report describes the history and the validation of the technique, with particular reference to breast cancer

    Low Levels of Human HIP14 Are Sufficient to Rescue Neuropathological, Behavioural, and Enzymatic Defects Due to Loss of Murine HIP14 in Hip14−/− Mice

    Get PDF
    Huntingtin Interacting Protein 14 (HIP14) is a palmitoyl acyl transferase (PAT) that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD). HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and downregulation of HIP14 by siRNA in vitro results in increased cell death in neurons. We previously reported that mice lacking murine Hip14 (Hip14−/−) share features of HD. In the current study, we have generated human HIP14 BAC transgenic mice and crossed them to the Hip14−/− model in order to confirm that the defects seen in Hip14−/− mice are in fact due to loss of Hip14. In addition, we sought to determine whether human HIP14 can provide functional compensation for loss of murine Hip14. We demonstrate that despite a relative low level of expression, as assessed via Western blot, BAC-derived human HIP14 compensates for deficits in neuropathology, behavior, and PAT enzyme function seen in the Hip14−/− model. Our findings yield important insights into HIP14 function in vivo
    corecore