16 research outputs found

    Bose-Einstein Correlations in charged current muon-neutrino interactions in NOMAD

    Full text link
    Bose-Einstein Correlations in one and two dimensions have been studied in charged current muon-neutrino interaction events collected with NOMAD. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov parametrizations. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal sizes is observed.Comment: 4 pages, 4 figures, Moriond Proceeding for QCD Sessio

    Analisi di stabilità di un pendio detritico montano tramite impiego di georadar installato su drone

    Get PDF
    Il presente lavoro descrive le attività svolte in merito alla verifica della stabilità di un pendio detritico naturale posto in zona montana di difficile accesso nella catena delle Alpi Occidentali. I dati necessari alle analisi sono stati raccolti ed elaborati attraverso tecniche geomatiche quali, in particolare, rilievi fotogrammetrici con drone con lo scopo di acquisire delle foto prospettiche dalle quali produrre una nuvola di punti georeferenziata e successivamente un ortofotomosaico. Il rilievo è stato eseguito con un drone tipo DJI Mavic 2 Pro. Contestualmente ai rilievi fotogrammetrici sono stati eseguiti rilievi topografici di Ground Control Points necessari nella fase di orientamento esterno dei fotogrammi. I fotogrammi sono stati elaborati utilizzando il software Agisoft Metashape. La nuvola 3D densa prodotta è stata successivamente interpolata in modo da generare un modello digitale denso della superficie (DDSM) in formato raster. Sulla base del DDSM sono state ortocorrette le immagini fotografiche ottenendo degli ortofotomosaici. Allo scopo di determinare lo spessore della coltre detritica naturale al di sopra del bedrock, sono stati eseguiti 2 rilievi geofisici utilizzando lo strumento COBRA Plug‐In GPR Model SE-150, installato su drone DJI M600Pro. L’indagine si è svolta sorvolandolo direttamente l’area di interesse a circa 1.5 metri dalla superficie e raggiungendo aree altrimenti non investigabili per motivi di sicurezza. I dati del rilievo georadar sono stati elaborati con l’ausilio dell’applicativo PRISM® 2.6. La nuvola di punti 3D ottenuta dal rilievo fotogrammetrico ha permesso la ricostruzione delle corrette geometrie del corpo detritico naturale. Tramite il software open source CloudCompare Omnia, sono stati selezionati profili rappresentativi dell’area di interesse in seguito importati all’interno del software RocScience Slide2. La ricostruzione della profondità del contatto tra la copertura detritica e il bedrock è stata eseguita estrapolando le informazioni ricavate dalle tracce georadar più prossime al profilo di interesse. Le verifiche sono state effettuate valutando diversi scenari quali: condizioni statiche, dinamiche con presenza di sisma, condizioni statiche con presenza di neve e dinamiche con presenza contemporanea di neve e sisma. L’impiego del georadar installato su un drone si è dimostrato un ottimo metodo di indagine in situazioni in cui l’area di studio risulta essere inaccessibile alle classiche analisi geofisiche per motivi morfologici e di sicurezza. La combinazione quindi di dati ottenuti tramite rilievi topo-cartografici e areofotogrammetrici con rilievo geofisico da drone ha permesso lo studio della stabilità di un versante naturale in area critica

    UAV-mounted Ground Penetrating Radar: an example for the stability analysis of a mountain rock debris slope

    Get PDF
    This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications. The analysis focused on the stability of a natural scree slope in the Germanasca Valley, in the western Italian Alps. As a consequence of its steep shape and the related geological hazard, the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system. Furthermore, conventional in-situ surveys led to the collection of geological and geomorphological data. The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit, using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators. The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety, verified in static conditions (i.e., natural static condition and static condition with snow cover), slightly above the stability limit value of 1. On the contrary, the dynamic loading conditions (i.e., seismic action applied) showed a Factor of Safety below the stability limit value. The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock, which are useful to design the slope model and to evaluate the scree slope stability in different conditions

    Scintillation and Cherenkov light detection with a 3 mm × 3mm Silicon PhotoMultiplier

    Get PDF
    9noreservedSilicon Photomultipliers (SiPM), known also as Multi Pixel Photon Counters (MPPC) are very promising solid-state photodetectors, working in the Geiger regime, with single photoelectron sensitivity. Low-light-level detection was investigated with a 3 mm × 3 mm MPPC by Hamamatsu, optically coupled with scintillators and Cherenkov acrylic radiators. Its performances were studied with a β-source, under different operating conditions. During the tests, the MPPC gain was stabilized using a temperature dependent feed-back loop on the operating voltage. The results of the tests are discussed.mixedKIM, M. Y. ; AVANZINI, C.; BAGLIESI, M. G.; BIGONGIARI, G.; LOMTADZE, T.; MAESTRO, P.; MARROCCHESI, P.S.; MORSANI, F.; ZEI, R.Kim, M. Y.; Avanzini, C.; Bagliesi, M. G.; Bigongiari, G.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Morsani, F.; Zei, R

    Design and Characterization of a double-layered silicon charge detector for cosmic ray measurements in CALET

    No full text
    CALET (CALorimetric Electron Telescope) is a space instrument to explore a new frontier at higher energies for the cosmic-rays (electrons, gamma rays and heavy nuclei) and to search for dark matter.1 This mission is designed for a long exposure observation on the external JEM-EF facility aboard the International Space Station. It is optimized for the search of nearby sources of acceleration of cosmic ray electrons in the TeV energy range and gamma rays up to several TeV range. It can also extend the available data on cosmic ray composition and on secondary-to-primary ratios to higher energies allowing to discriminate among different propagation models and to derive the acceleration spectra at the source. An accurate measurement of the charge of the incoming particle is performed in CALET by a double-layered array of pixelated silicon sensors (Silicon Array or SIA), covering a seamless sensitive area of the order of 0.3 m2 and providing single-element identification up to Fe and above. The design of SIA instrument and its characterization are presented

    First measurements of cosmic-ray nuclei at high energy with CREAM

    Get PDF
    36siCerenkov detector; Charge; Cosmic rays; Energy spectrum; TRDreservedThe balloon-borne cosmic-ray experiment CREAM-I (Cosmic-Ray Energetics And Mass) recently completed a successful 42-day flight during the 2004–2005 NASA/NSF/NSBF Antarctic expedition. CREAM-I combines an imaging calorimeter with charge detectors and a precision transition radiation detector (TRD). The TRD component of CREAM-I is targeted at measuring the energy of cosmic-ray particles with charges greater than Z ∼ 3. A central science goal of this effort is the determination of the ratio of secondary to primary nuclei at high energy. This measurement is crucial for the reconstruction of the propagation history of cosmic rays, and consequently for the determination of their source spectra. First scientific results from this instrument are presented.mixedS.P. WAKELY; H.S. AHN; P. ALLISON; M.G. BAGLIESI; J.J. BEATTY; G. BIGONGIARI; P. BOYLE; T.J. BRANDT; J.T. CHILDERS; N.B. CONKLIN; S. COUTU; M.A. DUVERNOIS; O. GANEL; J.H. HAN; J.A. JEON; K.C. KIM; M.H. LEE; L. LUTZ; P. MAESTRO; A. MALININE; P.S. MARROCCHESI; S. MINNICK; S.I. MOGNET; S.W. NAM; S. NUTTER; I.H. PARK; J.H. PARK; N.H. PARK; E.S. SEO; R. SINA; S.P. SWORDY; J. WU; J. YANG; Y.S. YOON; R. ZEI; S.Y. ZINNS. P., Wakely; H. S., Ahn; P., Allison; Bagliesi, MARIA GRAZIA; J. J., Beatty; Bigongiari, Gabriele; P., Boyle; T. J., Brandt; J. T., Childers; N. B., Conklin; S., Coutu; M. A., Duvernois; O., Ganel; J. H., Han; J. A., Jeon; K. C., Kim; M. H., Lee; L., Lutz; Maestro, Paolo; A., Malinine; Marrocchesi, PIER SIMONE; S., Minnick; S. I., Mognet; S. W., Nam; S., Nutter; I. H., Park; J. H., Park; N. H., Park; E. S., Seo; R., Sina; S. P., Swordy; J., Wu; J., Yang; Y. S., Yoon; Zei, Riccardo; S. Y., Zin

    Silicon charge detector for the CREAM experiment

    Get PDF
    The Cosmic Ray Energetics And Mass (CREAM) payload had its first successful flight in December 2004 from McMurdo Station, Antarctica as a Long Duration Balloon mission. Its aim is to explore the supernova acceleration limit of cosmic rays, the relativistic gas of protons, electrons and heavy nuclei arriving at Earth from outside of the solar system. The instrument is equipped with several systems to measure charge and energy spectra for Z=1–26 nuclei over the energy range 1011–. The Silicon Charge Detector (SCD) is a precision device to measure the charge of incident cosmic rays. The design, construction, integration and preliminary performance of the SCD are detailed in this paper

    Measurements of High-Energy Heavy Nuclei with the CREAM-I TRD

    No full text
    The balloon-borne cosmic-ray experiment CREAM-I (Cosmic-Ray Energetics And Mass) completed a successful 42-day flight during the 2004-2005 NASA/NSF/NSBF Antarctic expedition. CREAM-I combines an imaging calorimeter with charge detectors and a precision transition radiation detector (TRD). The TRD component of CREAM-I is targeted at measuring the energy of cosmic-ray particles with charges greater than Z~3. A central science goal of this effort is the determination of the ratio of secondary to primary nuclei at high energy. This measurement is crucial for the reconstruction of the propagation history of cosmic rays and consequently, for the determination of their source spectra. Initial results from the TRD portion of the science stack will be presented

    Measurements of the Relative Abundances of High-energy Cosmic-ray Nuclei in the TeV/Nucleon Region

    Get PDF
    36sireservedWe present measurements of the relative abundances of cosmic-ray nuclei in the energy range of 500-3980 GeV/nucleon from the second flight of the Cosmic Ray Energetics And Mass balloon-borne experiment. Particle energy was determined using a sampling tungsten/scintillating-fiber calorimeter, while particle charge was identified precisely with a dual-layer silicon charge detector installed for this flight. The resulting element ratios C/O, N/O, Ne/O, Mg/O, Si/O, and Fe/O at the top of atmosphere are 0.919 ± 0.123stat ± 0.030syst, 0.076 ± 0.019stat ± 0.013syst, 0.115 ± 0.031stat ± 0.004syst, 0.153 ± 0.039stat ± 0.005syst, 0.180 ± 0.045stat ± 0.006syst, and 0.139 ± 0.043stat ± 0.005syst, respectively, which agree with measurements at lower energies. The source abundance of N/O is found to be 0.054 ± 0.013stat ± 0.009syst+0.010esc –0.017. The cosmic-ray source abundances are compared to local Galactic (LG) abundances as a function of first ionization potential and as a function of condensation temperature. At high energies the trend that the cosmic-ray source abundances at large ionization potential or low condensation temperature are suppressed compared to their LG abundances continues. Therefore, the injection mechanism must be the same at TeV/nucleon energies as at the lower energies measured by HEAO-3, CRN, and TRACER. Furthermore, the cosmic-ray source abundances are compared to a mixture of 80% solar system abundances and 20% massive stellar outflow (MSO) as a function of atomic mass. The good agreement with TIGER measurements at lower energies confirms the existence of a substantial fraction of MSO material required in the ~TeV per nucleon region.mixedH. S. AHN; P. S. ALLISON; M. G. BAGLIESI; L. BARBIER; J. J. BEATTY; G. BIGONGIARI; T. J. BRANDT; J. T. CHILDERS; N. B. CONKLIN; S. COUTU; M. A. DUVERNOIS; O. GANEL; J. H. HAN; J. A. JEON; K. C. KIM; J. LEE; M. H. LEE; P. MAESTRO; A. MALININ; P. S. MARROCCHESI; S. MINNICK; S. I. MOGNET; G.W. NA; J. NAM; S. NAM; S. NUTTER; I. H. PARK; N. H. PARK; E. S. SEO; R. SINA; P. WALPOLE; J. WU; J. YANG; Y. S. YOON; R. ZEI; S. Y. ZINNH. S., Ahn; P. S., Allison; Bagliesi, MARIA GRAZIA; L., Barbier; J. J., Beatty; Bigongiari, Gabriele; T. J., Brandt; J. T., Childers; N. B., Conklin; S., Coutu; M. A., Duvernois; O., Ganel; J. H., Han; J. A., Jeon; K. C., Kim; J., Lee; M. H., Lee; Maestro, Paolo; A., Malinin; Marrocchesi, PIER SIMONE; S., Minnick; S. I., Mognet; G. W., Na; J., Nam; S., Nam; S., Nutter; I. H., Park; N. H., Park; E. S., Seo; R., Sina; P., Walpole; J., Wu; J., Yang; Y. S., Yoon; R., Zei; S. Y., Zin
    corecore