17 research outputs found

    Polyesters and Poly(ester-urethane)s from Biobased Difuranic Polyols

    No full text
    This contribution investigates the impact of rigid and flexible difuranic polyols on the resulting polyester (PE) and poly­(ester-urethane) (PEU) properties. Three biobased difuranic polyol monomers, 5,5′-bihydroxymethyl furil (BHMF), 5,5′-dihydroxymethyl furoin (DHMF), and bis­[5-(hydroxymethyl)­furan-2-yl)­methyl]­adipate (BHFA), all derived from the biomass platform chemical 5-hydroxymethylfurfural (HMF), were employed for the synthesis of a series of new linear and cross-linked PEs as well as amorphous and semicrystalline PEUs. The polycondensations of diols (rigid BHMF and flexible BHFA) with various diacyl chlorides afford linear PEs, whereas the rigid triol (DHMF) reacts with diacyl chlorides to form cross-linked PEs. Among these difuranic PEs, the most intriguing PE is the one containing CC double bonds, derived from BHFA and fumaryl chloride, which exhibits the unique self-curing ability via the Diels–Alder reaction. Furthermore, the catalyzed polyaddition of BHFA with various diiscyanates produces novel PEUs, the most interesting of which is the one derived from BHFA and hexamethylene diisocyanate, a semicrystalline material displaying a high melting-transition temperature of 135.8 °C

    Polyesters and Poly(ester-urethane)s from Biobased Difuranic Polyols

    No full text
    This contribution investigates the impact of rigid and flexible difuranic polyols on the resulting polyester (PE) and poly­(ester-urethane) (PEU) properties. Three biobased difuranic polyol monomers, 5,5′-bihydroxymethyl furil (BHMF), 5,5′-dihydroxymethyl furoin (DHMF), and bis­[5-(hydroxymethyl)­furan-2-yl)­methyl]­adipate (BHFA), all derived from the biomass platform chemical 5-hydroxymethylfurfural (HMF), were employed for the synthesis of a series of new linear and cross-linked PEs as well as amorphous and semicrystalline PEUs. The polycondensations of diols (rigid BHMF and flexible BHFA) with various diacyl chlorides afford linear PEs, whereas the rigid triol (DHMF) reacts with diacyl chlorides to form cross-linked PEs. Among these difuranic PEs, the most intriguing PE is the one containing CC double bonds, derived from BHFA and fumaryl chloride, which exhibits the unique self-curing ability via the Diels–Alder reaction. Furthermore, the catalyzed polyaddition of BHFA with various diiscyanates produces novel PEUs, the most interesting of which is the one derived from BHFA and hexamethylene diisocyanate, a semicrystalline material displaying a high melting-transition temperature of 135.8 °C

    Facile Preparation of a Scandium Terminal Imido Complex Supported by a Phosphazene Ligand

    No full text
    The scandium bis­(alkyl) complex bearing the phosphazene ligand L<sup>1</sup>Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub> (<b>1</b>) (L<sup>1</sup> = N­(PPh<sub>2</sub>NPh)<sub>2</sub>) reacted with an equimolar amount of 2,6-diisopropylaniline to afford the corresponding mixed alkyl/anilido complex L<sup>1</sup>Sc­[NHC<sub>6</sub>H<sub>3</sub>(<sup><i>i</i></sup>Pr)<sub>2</sub>]­(CH<sub>2</sub>SiMe<sub>3</sub>) (<b>2</b>). Under mild conditions (20 °C, 4 h or 0 °C, 12 h), complex <b>2</b> could be swiftly transformed to the terminal imido complex L<sup>1</sup>ScN­[C<sub>6</sub>H<sub>3</sub>(<sup><i>i</i></sup>Pr)<sub>2</sub>]­(DMAP)<sub>2</sub> (<b>4</b>) in the presence of DMAP (DMAP = 4-<i>N,N</i>-dimethylaminopyridine). Correspondingly, treatment of the yttrium and lutetium bis­(alkyl) complexes L<sup>2</sup>Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub> (L<sup>2</sup> = N­[Ph<sub>2</sub>PNC<sub>6</sub>H<sub>3</sub>(<sup><i>i</i></sup>Pr)<sub>2</sub>]<sub>2</sub>; Ln = Y (<b>7</b>), Lu (<b>8</b>)) with equimolar amounts of 2,6-diisopropylaniline gave the mixed alkyl/anilido complexes L<sup>2</sup>Ln­[NHC<sub>6</sub>H<sub>3</sub>(<sup><i>i</i></sup>Pr)<sub>2</sub>]­(CH<sub>2</sub>SiMe<sub>3</sub>) (Ln = Y (<b>9</b>), Lu (<b>10</b>)), which, however, underwent dealkylation of the Ln–CH<sub>2</sub>SiMe<sub>3</sub> species at temperatures of 60 °C for <b>9</b> and 100 °C for <b>10</b> to afford bis­(anilido) complexes L<sup>2</sup>Ln­[NHC<sub>6</sub>H<sub>3</sub>(<sup><i>i</i></sup>Pr)<sub>2</sub>]<sub>2</sub> (Ln = Y (<b>11</b>), Lu (<b>12</b>)) as redistribution products. All these complexes have been characterized by <sup>1</sup>H, <sup>13</sup>C­{<sup>1</sup>H}, and <sup>31</sup>P­{<sup>1</sup>H} NMR spectroscopy and X-ray diffraction analyses, and clear structural insight into the behavior of an imido functionality on a lanthanide metal center was provided

    Phosphinimino-amino Magnesium Complexes: Synthesis and Catalysis of Heteroselective ROP of <i>rac</i>-Lactide

    No full text
    Alkane elimination reactions of phosphinimino-amine ligands HL<sup>1–8</sup> ((2,6-Me<sub>2</sub>-C<sub>6</sub>H<sub>3</sub>NH)­C­(Ph)CHPPh<sub>2</sub>(NAr) (Ar = C<sub>6</sub>H<sub>5</sub> (HL<sup>1</sup>); 2,6-Me<sub>2</sub>-C<sub>6</sub>H<sub>3</sub> (HL<sup>2</sup>); 2,6-Et<sub>2</sub>-C<sub>6</sub>H<sub>3</sub> (HL<sup>3</sup>); 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>-C<sub>6</sub>H<sub>3</sub> (HL<sup>4</sup>); 2-OMe-C<sub>6</sub>H<sub>4</sub> (HL<sup>5</sup>); 2-Cl-C<sub>6</sub>H<sub>4</sub> (HL<sup>6</sup>); 3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub> (HL<sup>7</sup>); 4-MeO-C<sub>6</sub>H<sub>4</sub> (HL<sup>8</sup>)) with Mg<sup><i>n</i></sup>Bu<sub>2</sub>, respectively, afforded a series of phosphinimino-amine-based complexes L<sup>1–8</sup>Mg<sup><i>n</i></sup>Bu­(THF) (<b>1</b>–<b>8</b>) by releasing butane. Complexes <b>1</b>–<b>8</b> are phosphinimino-amine-ligated THF-solvated mono­(alkyl)­s, among which <b>1</b>–<b>4</b> adopt twisted tetrahedral geometries, whereas <b>5</b> contains a trigonal bipyramido geometry core. Complexes <b>1</b>–<b>8</b> all display high activity for the ring-opening polymerization of <i>rac</i>-lactide. The molecular weights of the resulting PLA are close to the theoretic values, and the molecular weight distributions are narrow. Moreover, these complexes show medium to high heteroselectivity, which, interestingly, increases with the decrease of the ligand steric hindrance; thus, complex <b>1</b>, bearing a less bulky ligand, exhibits a heteroselectivity of <i>P</i><sub>r</sub> = 0.98, the highest value of a magnesium-based initiator achieved to date. The kinetics study showed that the polymerization rate is first-order dependent on both monomer and initiator concentrations, and the overall rate equation is −d­[LA]/d<i>t</i> = 3.78 M<sup>–1</sup> s<sup>–1</sup> [LA]­[Mg]

    Efficient and Heteroselective Heteroscorpionate Rare-Earth-Metal Zwitterionic Initiators for ROP of <i>rac</i>-Lactide: Role of σ‑Ligand

    No full text
    A series of oxophosphine (3,5-Me<sub>2</sub>Pz)<sub>2</sub>CHP­(R)<sub>2</sub>O (Pz = pyrazole; R = <sup><i>t</i></sup>Bu (HL<sup>1</sup>), Cy (HL<sup>2</sup>)) and iminophosphine (3,5-Me<sub>2</sub>Pz)<sub>2</sub>CHP­(R)<sub>2</sub>NAr (R = Cy, Ar = Ph (HL<sup>3</sup>); R = Ph, Ar = Ph (HL<sup>4</sup>), Ar = 2,6-Me<sub>2</sub>-phenyl (HL<sup>5</sup>)) heteroscorpionate ligands were synthesized. Abstraction of the methide proton of these ligands by rare-earth-metal tris­(alkyl)­s, Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(THF)<sub>2</sub>, afforded the corresponding zwitterionic bis­(alkyl) complexes L<sup>1–5</sup>Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF) (L<sup>1</sup>, Ln = Y (<b>1a</b>), Lu (<b>1b</b>); L<sup>2</sup>, Ln = Y (<b>2a</b>), Lu (<b>2b</b>); L<sup>3</sup>, Ln = Y (<b>3a</b>), Lu (<b>3b</b>); L<sup>4</sup>, Ln = Y (<b>4a</b>), Lu (<b>4b</b>); L<sup>5</sup>, Ln = Y (<b>5a</b>), Lu (<b>5b</b>), while metathesis reaction of the lithium salts of LiL<sup>3</sup> and LiL<sup>4</sup> with YCl<sub>3</sub>(THF)<sub>2</sub> or YBr<sub>3</sub>(THF)<sub>2</sub> followed by treatment with LiCH<sub>2</sub>SiMe<sub>3</sub> and KN­(SiHMe<sub>2</sub>)<sub>2</sub>, respectively, afforded the first heteroscorpionate yttrium mixed halogen/alkyl or amido complexes L<sup>3–4</sup>Y­(Cl)­(CH<sub>2</sub>SiMe<sub>3</sub>)­(THF) (L<sup>3</sup> (<b>6a</b>), L<sup>4</sup> (<b>7a</b>)), L<sup>3–4</sup>Y­(Cl)­(N­(SiHMe<sub>2</sub>)<sub>2</sub>)­(THF) (L<sup>3 </sup>(<b>8a</b>), L<sup>4</sup> (<b>9a</b>)), L<sup>4</sup>Y­(Br)­(CH<sub>2</sub>SiMe<sub>3</sub>)­(THF) (<b>10a</b>), and L<sup>4</sup>Y­(Br)­(N­(SiHMe<sub>2</sub>)<sub>2</sub>)­(THF) (<b>11a</b>). The structures of these complexes were well-defined, and the molecular structures of <b>1a</b>, <b>2a</b>, <b>3b</b>, <b>4b</b>, <b>5a</b>, and <b>7a</b> were further characterized by single crystal X-ray diffraction analysis. Complexes <b>1</b>–<b>5</b> showed similar high activity toward the ROP of <i>rac</i>-LA at room temperature, and both the alkyl species participated in initiation, of which the lutetium complexes exhibited slightly higher selectivity than their yttrium analogues (<i>P</i><sub>r</sub> = 0.85–0.89 vs 0.80–0.84) despite the bulkiness of the ligands. Interestingly, the mixed halogen complexes <b>6a</b>–<b>11a</b> were single-site initiators, where the σ-halogen moiety remaining on the central metal showed, for the first time, facilitating the heteroselectivity up to <i>P</i><sub>r</sub> = 0.98. This result sheds new light on designing specifically selective catalytic precursors

    Mononuclear Heteroscorpionate Zwitterionic Zinc Terminal Hydride: Synthesis, Reactivity, and Catalysis for Hydrosilylation of Aldehydes

    Get PDF
    Treatment of heteroscorpionate zinc benzyloxy complex LZnOBn (<b>1</b>, L = (<sup>Me</sup>Pz)<sub>2</sub>CP­(Ph)<sub>2</sub>NPh, <sup>Me</sup>Pz = 3,5-dimethylpyrazolyl) with phenylsilane (PhSiH<sub>3</sub>) gave a zinc hydride complex LZnH (<b>2</b>) containing a rare terminal hydride fragment. X-ray diffraction analysis and the DFT calculation confirm the zwitterionic structure of complex <b>2</b>. The stoichiometric reaction of <b>2</b> with CS<sub>2</sub> readily afforded a dithioformate complex LZnSCH­(S) (<b>3</b>) of the CS insertion into the Zn–H product. Moreover, complex <b>2</b> was an efficient catalyst for the hydrosilylation reaction of a series of silanes and aldehydes under mild conditions, featuring excellent functional group tolerance. The preliminary mechanistic study revealed that both zinc benzyloxy complex <b>1</b> and zinc hydride complex <b>2</b> were involved in the hydrosilylation process as the reaction intermediates

    Efficient and Heteroselective Heteroscorpionate Rare-Earth-Metal Zwitterionic Initiators for ROP of <i>rac</i>-Lactide: Role of σ‑Ligand

    No full text
    A series of oxophosphine (3,5-Me<sub>2</sub>Pz)<sub>2</sub>CHP­(R)<sub>2</sub>O (Pz = pyrazole; R = <sup><i>t</i></sup>Bu (HL<sup>1</sup>), Cy (HL<sup>2</sup>)) and iminophosphine (3,5-Me<sub>2</sub>Pz)<sub>2</sub>CHP­(R)<sub>2</sub>NAr (R = Cy, Ar = Ph (HL<sup>3</sup>); R = Ph, Ar = Ph (HL<sup>4</sup>), Ar = 2,6-Me<sub>2</sub>-phenyl (HL<sup>5</sup>)) heteroscorpionate ligands were synthesized. Abstraction of the methide proton of these ligands by rare-earth-metal tris­(alkyl)­s, Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(THF)<sub>2</sub>, afforded the corresponding zwitterionic bis­(alkyl) complexes L<sup>1–5</sup>Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF) (L<sup>1</sup>, Ln = Y (<b>1a</b>), Lu (<b>1b</b>); L<sup>2</sup>, Ln = Y (<b>2a</b>), Lu (<b>2b</b>); L<sup>3</sup>, Ln = Y (<b>3a</b>), Lu (<b>3b</b>); L<sup>4</sup>, Ln = Y (<b>4a</b>), Lu (<b>4b</b>); L<sup>5</sup>, Ln = Y (<b>5a</b>), Lu (<b>5b</b>), while metathesis reaction of the lithium salts of LiL<sup>3</sup> and LiL<sup>4</sup> with YCl<sub>3</sub>(THF)<sub>2</sub> or YBr<sub>3</sub>(THF)<sub>2</sub> followed by treatment with LiCH<sub>2</sub>SiMe<sub>3</sub> and KN­(SiHMe<sub>2</sub>)<sub>2</sub>, respectively, afforded the first heteroscorpionate yttrium mixed halogen/alkyl or amido complexes L<sup>3–4</sup>Y­(Cl)­(CH<sub>2</sub>SiMe<sub>3</sub>)­(THF) (L<sup>3</sup> (<b>6a</b>), L<sup>4</sup> (<b>7a</b>)), L<sup>3–4</sup>Y­(Cl)­(N­(SiHMe<sub>2</sub>)<sub>2</sub>)­(THF) (L<sup>3 </sup>(<b>8a</b>), L<sup>4</sup> (<b>9a</b>)), L<sup>4</sup>Y­(Br)­(CH<sub>2</sub>SiMe<sub>3</sub>)­(THF) (<b>10a</b>), and L<sup>4</sup>Y­(Br)­(N­(SiHMe<sub>2</sub>)<sub>2</sub>)­(THF) (<b>11a</b>). The structures of these complexes were well-defined, and the molecular structures of <b>1a</b>, <b>2a</b>, <b>3b</b>, <b>4b</b>, <b>5a</b>, and <b>7a</b> were further characterized by single crystal X-ray diffraction analysis. Complexes <b>1</b>–<b>5</b> showed similar high activity toward the ROP of <i>rac</i>-LA at room temperature, and both the alkyl species participated in initiation, of which the lutetium complexes exhibited slightly higher selectivity than their yttrium analogues (<i>P</i><sub>r</sub> = 0.85–0.89 vs 0.80–0.84) despite the bulkiness of the ligands. Interestingly, the mixed halogen complexes <b>6a</b>–<b>11a</b> were single-site initiators, where the σ-halogen moiety remaining on the central metal showed, for the first time, facilitating the heteroselectivity up to <i>P</i><sub>r</sub> = 0.98. This result sheds new light on designing specifically selective catalytic precursors

    Yttrium Hydride Complex Bearing CpPN/Amidinate Heteroleptic Ligands: Synthesis, Structure, and Reactivity

    No full text
    The reaction of the yttrium dialkyls (C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf) (<b>1</b>) with an excess of <i>N</i>,<i>N′</i>-diisopropylcarbodiimide gave the yttrium monoalkyl complex (C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)­[<sup><i>i</i></sup>PrNC­(CH<sub>2</sub>SiMe<sub>3</sub>)–N<sup><i>i</i></sup>Pr] (<b>2</b>). <b>2</b> subsequently reacted with 1 equiv of PhSiH<sub>3</sub> to generate the CpPN/amidinate heteroleptic yttrium hydride {(C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­[<sup><i>i</i></sup>PrNC­(CH<sub>2</sub>SiMe<sub>3</sub>)–N<sup><i>i</i></sup>Pr]­(μ-H)}<sub>2</sub> (<b>3</b>). Hydride <b>3</b> showed good reactivity toward various substrates containing unsaturated C–C, C–N, and N–N bonds, such as azobenzene, <i>p</i>-tolyacetylene, 1,4-bis­(trimethylsilyl)-1,3-butanediyne, <i>N</i>,<i>N′</i>-diisopropylcarbodiimide, and 4-dimethylaminopyridine, affording the yttrium hydrazide complex <b>4</b> with a rare η<sup>2</sup>-Cp bonding mode, yttrium terminal alkynyl complex <b>5</b>, yttrium η<sup>3</sup>-propargyl complex <b>6</b>, yttrium amidinate complex <b>7</b>, and yttrium 2-hydro-4-dimethylaminopyridyl product <b>8</b>, respectively

    Yttrium Hydride Complex Bearing CpPN/Amidinate Heteroleptic Ligands: Synthesis, Structure, and Reactivity

    No full text
    The reaction of the yttrium dialkyls (C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf) (<b>1</b>) with an excess of <i>N</i>,<i>N′</i>-diisopropylcarbodiimide gave the yttrium monoalkyl complex (C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)­[<sup><i>i</i></sup>PrNC­(CH<sub>2</sub>SiMe<sub>3</sub>)–N<sup><i>i</i></sup>Pr] (<b>2</b>). <b>2</b> subsequently reacted with 1 equiv of PhSiH<sub>3</sub> to generate the CpPN/amidinate heteroleptic yttrium hydride {(C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­[<sup><i>i</i></sup>PrNC­(CH<sub>2</sub>SiMe<sub>3</sub>)–N<sup><i>i</i></sup>Pr]­(μ-H)}<sub>2</sub> (<b>3</b>). Hydride <b>3</b> showed good reactivity toward various substrates containing unsaturated C–C, C–N, and N–N bonds, such as azobenzene, <i>p</i>-tolyacetylene, 1,4-bis­(trimethylsilyl)-1,3-butanediyne, <i>N</i>,<i>N′</i>-diisopropylcarbodiimide, and 4-dimethylaminopyridine, affording the yttrium hydrazide complex <b>4</b> with a rare η<sup>2</sup>-Cp bonding mode, yttrium terminal alkynyl complex <b>5</b>, yttrium η<sup>3</sup>-propargyl complex <b>6</b>, yttrium amidinate complex <b>7</b>, and yttrium 2-hydro-4-dimethylaminopyridyl product <b>8</b>, respectively

    Phosphazene-Functionalized Cyclopentadienyl and Its Derivatives Ligated Rare-Earth Metal Alkyl Complexes: Synthesis, Structures, and Catalysis on Ethylene Polymerization

    No full text
    Treatment of Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) with 1 equiv of CpPN-type ligands C<sub>5</sub>H<sub>4</sub>PPh<sub>2</sub>–NH–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>1</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b>) at room temperature readily generated the corresponding CpPN-type bis­(alkyl) complexes <b>1</b> and <b>2a</b>–<b>2c</b>. Addition of 3 equiv of LiCH<sub>2</sub>SiMe<sub>3</sub> to a mixture of <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b> and LnCl<sub>3</sub>(thf)<sub>2</sub> (Ln = Sm and Nd) also afforded the CpPN-type bis­(alkyl) complexes <b>2d</b> and <b>2e</b>. The Cp moiety bonds to the central metal in a classical η<sup>5</sup> mode in all CpPN-type complexes <b>1</b> and <b>2</b>. In contrast, the Cp<sup>Me</sup>PN-type ligands C<sub>5</sub>Me<sub>4</sub>H–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>2</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b>) behaved differently. <b>L<sup>2</sup>(Me)</b> did not react with Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>. Similarly, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> was also inert to Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> even at 50 °C. When the central metal was changed to yttrium, however, the equimolar reaction between Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> and <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> in the presence of LiCl afforded two bis­(alkyl) complexes <b>3a</b> and <b>3b</b>. In the main product <b>3a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), the ligand bonds to the Y<sup>3+</sup> ion in a rare η<sup>3</sup>-allyl/κ-N mode, whereas in <b>3b</b>, <b>(</b>C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(LiCl)­(thf), the Cp ring coordinates to the Y<sup>3+</sup> ion in an η<sup>5</sup> mode, and a LiCl unit is located between the Y<sup>3+</sup> ion and the nitrogen atom. When the central metal was changed to lutetium, a bis­(alkyl) complex <b>4a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), and a bis­(alkyl) complex <b>4b</b>, (C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>, were isolated. The protonolysis reaction of the IndPN-type ligands C<sub>9</sub>H<sub>7</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>3</sup>(Me)</b>; R = Et, <b>L<sup>3</sup>(Et)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>3</sup>(<sup><i>i</i></sup>Pr)</b>) with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) generated the IndPN-type bis­(alkyl) complexes <b>5a</b>–<b>5c</b>, <b>6</b>, and <b>7a</b>–<b>7c</b>, selectively, where the Ind moiety tends to adopt an η<sup>3</sup>-bonding fashion. The more bulky FluPN-type ligands C<sub>13</sub>H<sub>9</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>4</sub>R (R = H, <b>L<sup>4</sup>(H)</b>; R = Me, <b>L<sup>4</sup>(Me)</b>) were treated with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc and Lu) to afford the FluPN-type bis­(alkyl) complexes <b>8</b> and <b>9a</b> and <b>9b</b>, where the Flu moiety has a rare η<sup>1</sup>-bonding mode. Complexes <b>1</b>–<b>9</b> were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR; X-ray; and elemental analyses. Upon activation with AlR<sub>3</sub> and [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], the scandium complexes showed good to high catalytic activity for ethylene polymerization. The effects of the sterics and electronics of the ligand, the loading and the type of AlR<sub>3</sub>, the polymerization temperature, and the polymerization time on the catalytic activity were also discussed
    corecore