10 research outputs found

    Synthesis and evaluation of antibacterial activity for a series of N-phthaloylglycine derivatives

    Get PDF
    Two series of N-phthaloylglycine derivatives were synthesized under Schotten-Baumann conditions. The first series consists of N-phthaloylglycine amides (4a-h), and the second one consists of benzimidazole derivatives of N-phthaloylglycine (6a-d). All the synthesized analogues were evaluated for their in vitro antimicrobial activity by using disc diffusion method. In the first series, compounds 4h (MIC, 0.5 mg/L), 4a (MIC, 0.6 mg/L), and 4e (MIC, 0.7 mg/L) were found to be the most potent against vancomycin-resistant Staphylococcus aureus (VRSA). Furthermore, three compounds i.e. 4g (MIC, 0.8 mg/L), 6b (MIC, 1.5 mg/L), and 4h (MIC, 1.6 mg/L) displayed good activity against methicillin-resistant Staphylococcus aureus (MRSA). All the synthesized compounds exhibited a wide range of antibacterial activity against all of the Staphylococcus aureus resistant strains tested. The structures of the synthesized compounds were characterized by IR, 1H NMR, 13C NMR and MS (EI)

    The Cajal Body and Histone Locus Body

    No full text
    The Cajal body (CB) is a nuclear organelle present in all eukaryotes that have been carefully studied. It is identified by the signature protein coilin and by CB-specific RNAs (scaRNAs). CBs contain high concentrations of splicing small nuclear ribonucleoproteins (snRNPs) and other RNA processing factors, suggesting that they are sites for assembly and/or posttranscriptional modification of the splicing machinery of the nucleus. The histone locus body (HLB) contains factors required for processing histone pre-mRNAs. As its name implies, the HLB is associated with the genes that code for histones, suggesting that it may function to concentrate processing factors at their site of action. CBs and HLBs are present throughout the interphase of the cell cycle, but disappear during mitosis. The biogenesis of CBs shows the features of a self-organizing structure

    Coilin Is Essential for Cajal Body Organization in Drosophila melanogaster

    Get PDF
    Cajal bodies (CBs) are nuclear organelles that occur in a variety of organisms, including vertebrates, insects, and plants. They are most often identified with antibodies against the marker protein coilin. Because the amino acid sequence of coilin is not strongly conserved evolutionarily, coilin orthologues have been difficult to recognize by homology search. Here, we report the identification of Drosophila melanogaster coilin and describe its distribution in tissues of the fly. Surprisingly, we found coilin not only in CBs but also in histone locus bodies (HLBs), calling into question the use of coilin as an exclusive marker for CBs. We analyzed two null mutants in the coilin gene and a piggyBac insertion mutant, which leads to specific loss of coilin from the germline. All three mutants are homozygous viable and fertile. Cells that lack coilin also lack distinct foci of other CB markers, including fibrillarin, the survival motor neuron (SMN) protein, U2 small nuclear RNA (snRNA), U5 snRNA, and the small CB-specific (sca) RNA U85. However, HLBs are not obviously affected in coilin-null flies. Thus, coilin is required for normal CB organization in Drosophila but is not essential for viability or production of functional gametes

    New Histories for the Age of Speed: The Archaeological–Architectural Past in Interwar Afghanistan and Iran

    No full text
    corecore