18 research outputs found

    Developmental Effects of Perfluorononanoic Acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-Alpha

    Get PDF
    Perfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα). In the current study, we used PPARα knockout (KO) and 129S1/SvlmJ wild-type (WT) mice to investigate the role of PPARα in mediating PFNA-induced in vivo effects. Pregnant KO and WT mice were dosed orally with water (vehicle control: 10 ml/kg), 0.83, 1.1, 1.5, or 2 mg/kg PFNA on gestational days (GDs) 1–18 (day of sperm plug = GD 0). Maternal weight gain, implantation, litter size, and pup weight at birth were unaffected in either strain. PFNA exposure reduced the number of live pups at birth and survival of offspring to weaning in the 1.1 and 2 mg/kg groups in WT. Eye opening was delayed (mean delay 2.1 days) and pup weight at weaning was reduced in WT pups at 2 mg/kg. These developmental endpoints were not affected in the KO. Relative liver weight was increased in a dose-dependent manner in dams and pups of the WT strain at all dose levels but only slightly increased in the highest dose group in the KO strain. In summary, PFNA altered liver weight of dams and pups, pup survival, body weight, and development in the WT, while only inducing a slight increase in relative liver weight of dams and pups at 2 mg/kg in KO mice. These results suggest that PPARα is an essential mediator of PFNA-induced developmental toxicity in the mouse

    In vivo silencing of alpha-synuclein using naked siRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease <it>post-mortem</it>. Genetic variability in <it>SNCA </it>contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. <it>SNCA </it>downregulation is therefore a valid therapeutic target for PD.</p> <p>Results</p> <p>We have identified human and murine-specific siRNA molecules which reduce <it>SNCA in vitro</it>. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces <it>SNCA </it>levels. Reduction of <it>SNCA </it>in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion.</p> <p>Conclusion</p> <p>We have developed naked gene-specific siRNAs that silence expression of <it>SNCA in vivo</it>. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of <it>SNCA</it>, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from <it>SNCA </it>overexpression.</p

    Deletion of the Ubiquitin Ligase CHIP Leads to the Accumulation, But Not the Aggregation, of Both Endogenous Phospho- and Caspase-3-Cleaved Tau Species

    Get PDF
    Accumulation of the microtubule-associated protein tau into neurofibrillary lesions is a pathological consequence of several neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Hereditary mutations in th
    corecore