3 research outputs found

    Numerical investigation of the effects of dwell time duration in a two-stage injection scheme on exergy terms in an IDI diesel engine by three-dimensional modeling

    No full text
    Dwell duration of multiple-injection scheme is an important parameter, which makes it possible to shift the tradeoff curve between soot and NOx closer to the origin. In this investigation, therefore, energy and exergy analyses are carried out for various two-step injection schemes in which 25% of the total fuel is injected during the second pulse and the dwell time is increased from 5°CA (crank angle) to 30°CA by 5°CA increments. The calculations are performed for a Lister 8.1 indirect injection (IDI) diesel engine at full load operation. The energy analysis for these schemes is performed during a closed cycle by using a three-dimensional CFD code. The cylinder pressure results for the baseline engine are compared with the corresponding experimental data and they show good agreement. For the exergy analysis, an in-house computational code has been developed, which uses the results of energy analysis in various cases. With crank angle positions and dwell durations set for different injection schemes, various rates of exergy are calculated and the cumulative exergy components are identified separately. The results show that the values of work exergy and exergy efficiency decrease when the dwell duration is changed from 5°CA to 30°CA. Also, there is a sharp change in the exergy parameters when the dwell time reaches 25°CA

    Statistical analysis on the effect of premixed ratio, EGR, and diesel fuel injection parameters on the performance and emissions of a NG/Diesel RCCI engine using a DOE method

    No full text
    In reactivity-controlled compression ignition (RCCI) engines, the ignition and combustion of premixed low reactive fuel (LRF) such as natural gas (NG) is controlled by the injection of high reactive fuel (HRF) such as diesel fuel during the compression stroke. In this study, the effects of six different input parameters on the performance and emissions of the natural gas/diesel fueled RCCI engine are studied using fractional factorial design (FFD) method, which is one of the design of experiment (DOE) methods. In this method, the effects of the interactions of input parameters, referred to as “factors,” on the outputs, referred to as “responses,” are investigated. The factors include premixed ratio (PR), start of first injection (SOI1), spray angle (SA), exhaust gas recirculation (EGR), start of second injection (SOI2), and mass fraction of first injection. Sixteen runs were conducted to evaluate the effects of the interaction between input factors on performance and emissions of a RCCI engine using a validated computational fluid dynamics (CFD) model. DOE results indicate that in order to increase gross indicated efficiency (GIE), higher premixed ratio, 85%, with wider spray angle, 150°, is an effective way. Meanwhile, carbon monoxide (CO) and unburned hydrocarbons (UHC) emissions as well as ringing intensity (RI) are decreased at this condition. To reduce NO emissions, it is beneficial to raise premixed ratio from 55% to 85% or to use 40% EGR, independently
    corecore