2 research outputs found
Enlarging the synthetic biology toolbox for Pichia pastoris: Golden Gate cloning and CRISPR/Cas9
State-of-the-art strain engineering techniques for the protein producing yeast host Pichia pastoris include overexpression of homologous and heterologous genes, and deletion of host genes. For this purpose overexpression vectors and gene deletion methods such as the split marker technique have been established. For metabolic and cell engineering purposes, the simultaneous overexpression of more than one gene is often needed. Previous approaches employing subsequent steps of overexpression and marker recycling were time- and labor-consuming. Therefore, efficient systems allowing multiple gene overexpression are required, that can be stably integrated into the P. pastoris genome. To this end, we developed a synthetic biology toolbox based on Golden Gate cloning to enable efficient construction of complex and versatile over-expression vectors. Up to five different expression cassettes, employing a library of promoters and terminators can be combined into one vector, and successfully integrated into the genomic DNA of P. pastoris at targeted loci in one step. Recent trends in synthetic biology, however, go into the direction of building up large and complex reaction networks. To allow for clean and unscarred genetic engineering, a CRISPR/Cas9 based method for gene insertions, deletions and replacements was developed, which paves the way for precise genomic rearrangements in P. pastoris. By using this technique precise genomic integrations were performed efficiently without integrative selection markers. The repertoire of genetic techniques developed so far, will provide a wide variety of possibilities to engineer P. pastoris. Applications for these synthetic biology tools in cell engineering of recombinant P. pastoris will be presented
Mechanical properties of non-centrosymmetric CePt3Si and CePt3B
Elastic moduli, hardness (both at room temperature) and thermal expansion (4.2-670 K) have been experimentally determined for polycrystalline CePt3Si and its prototype compound CePt3B as well as for single-crystalline CePt3Si. Resonant ultrasound spectroscopy was used to determine elastic properties (Young's modulus E and Poisson's ratio.) via the eigenfrequencies of the sample and the knowledge of sample mass and dimensions. Bulk and shear moduli were calculated from E and., and the respective Debye temperatures were derived. In addition, ab initio DFT calculations were carried out for both compounds. A comparison of parameters evaluated from DFT with those of experiments revealed, in general, satisfactory agreement. Positive and negative thermal expansion values obtained from CePt3Si single crystal data are fairly well explained in terms of the crystalline electric field model, using CEF parameters derived recently from inelastic neutron scattering. DFT calculations, in addition, demonstrate that the atomic vibrations keep almost unaffected by the antisymmetric spin-orbit coupling present in systems with crystal structures having no inversion symmetry. This is opposite to electronic properties, where the antisymmetric spin-orbit interaction has shown to distinctly influence features like the superconducting condensate of CePt3Si.Web of Science2918art. no. 18540