22 research outputs found

    Bayesian Nested Latent Class Models for Cause-of-Death Assignment using Verbal Autopsies Across Multiple Domains

    Full text link
    Understanding cause-specific mortality rates is crucial for monitoring population health and designing public health interventions. Worldwide, two-thirds of deaths do not have a cause assigned. Verbal autopsy (VA) is a well-established tool to collect information describing deaths outside of hospitals by conducting surveys to caregivers of a deceased person. It is routinely implemented in many low- and middle-income countries. Statistical algorithms to assign cause of death using VAs are typically vulnerable to the distribution shift between the data used to train the model and the target population. This presents a major challenge for analyzing VAs as labeled data are usually unavailable in the target population. This article proposes a Latent Class model framework for VA data (LCVA) that jointly models VAs collected over multiple heterogeneous domains, assign cause of death for out-of-domain observations, and estimate cause-specific mortality fractions for a new domain. We introduce a parsimonious representation of the joint distribution of the collected symptoms using nested latent class models and develop an efficient algorithm for posterior inference. We demonstrate that LCVA outperforms existing methods in predictive performance and scalability. Supplementary materials for this article and the R package to implement the model are available online.Comment: Main paper: 45 pages, 9 figures. Supplement: 20 pages, 16 figures, 2 table

    Bayesian Active Questionnaire Design for Cause-of-Death Assignment Using Verbal Autopsies

    Full text link
    Only about one-third of the deaths worldwide are assigned a medically-certified cause, and understanding the causes of deaths occurring outside of medical facilities is logistically and financially challenging. Verbal autopsy (VA) is a routinely used tool to collect information on cause of death in such settings. VA is a survey-based method where a structured questionnaire is conducted to family members or caregivers of a recently deceased person, and the collected information is used to infer the cause of death. As VA becomes an increasingly routine tool for cause-of-death data collection, the lengthy questionnaire has become a major challenge to the implementation and scale-up of VAs. In this paper, we propose a novel active questionnaire design approach that optimizes the order of the questions dynamically to achieve accurate cause-of-death assignment with the smallest number of questions. We propose a fully Bayesian strategy for adaptive question selection that is compatible with any existing probabilistic cause-of-death assignment methods. We also develop an early stopping criterion that fully accounts for the uncertainty in the model parameters. We also propose a penalized score to account for constraints and preferences of existing question structures. We evaluate the performance of our active designs using both synthetic and real data, demonstrating that the proposed strategy achieves accurate cause-of-death assignment using considerably fewer questions than the traditional static VA survey instruments

    Supplementary materials for "Bayesian factor models for probabilistic cause of death assessment with verbal autopsies"

    Get PDF
    Supplementary materials for "Bayesian factor models for probabilistic cause of death assessment with verbal autopsies": p. 1-

    The openVA Toolkit for Verbal Autopsies

    Full text link
    Verbal autopsy (VA) is a survey-based tool widely used to infer cause of death (COD) in regions without complete-coverage civil registration and vital statistics systems. In such settings, many deaths happen outside of medical facilities and are not officially documented by a medical professional. VA surveys, consisting of signs and symptoms reported by a person close to the decedent, are used to infer the cause of death for an individual, and to estimate and monitor the cause of death distribution in the population. Several classification algorithms have been developed and widely used to assign cause of death using VA data. However, The incompatibility between different idiosyncratic model implementations and required data structure makes it difficult to systematically apply and compare different methods. The openVA package provides the first standardized framework for analyzing VA data that is compatible with all openly available methods and data structure. It provides an open-sourced, R implementation of several most widely used VA methods. It supports different data input and output formats, and customizable information about the associations between causes and symptoms. The paper discusses the relevant algorithms, their implementations in R packages under the openVA suite, and demonstrates the pipeline of model fitting, summary, comparison, and visualization in the R environment

    Probabilistic Cause-of-death Assignment using Verbal Autopsies.

    Get PDF
    In regions without complete-coverage civil registration and vital statistics systems there is uncertainty about even the most basic demographic indicators. In such regions the majority of deaths occur outside hospitals and are not recorded. Worldwide, fewer than one-third of deaths are assigned a cause, with the least information available from the most impoverished nations. In populations like this, verbal autopsy (VA) is a commonly used tool to assess cause of death and estimate cause-specific mortality rates and the distribution of deaths by cause. VA uses an interview with caregivers of the decedent to elicit data describing the signs and symptoms leading up to the death. This paper develops a new statistical tool known as InSilicoVA to classify cause of death using information acquired through VA. InSilicoVA shares uncertainty between cause of death assignments for specific individuals and the distribution of deaths by cause across the population. Using side-by-side comparisons with both observed and simulated data, we demonstrate that InSilicoVA has distinct advantages compared to currently available methods

    Tuberculosis mortality and the male survival deficit in rural South Africa:An observational community cohort study

    Get PDF
    BACKGROUND: Women live on average five years longer than men, and the sex difference in longevity is typically lower in populations with high mortality. South Africa-a high mortality population with a large sex disparity-is an exception, but the causes of death that contribute to this difference are not well understood. METHODS: Using data from a demographic surveillance system in rural KwaZulu-Natal (2000-2014), we estimate differences between male and female adult life expectancy by HIV status. The contribution of causes of death to these life expectancy differences are computed with demographic decomposition techniques. Cause of death information comes from verbal autopsy interviews that are interpreted with the InSilicoVA tool. RESULTS: Adult women lived an average of 10.4 years (95% confidence Interval 9.0-11.6) longer than men. Sex differences in adult life expectancy were even larger when disaggregated by HIV status: 13.1 (95% confidence interval 10.7-15.3) and 11.2 (95% confidence interval 7.5-14.8) years among known HIV negatives and positives, respectively. Elevated male mortality from pulmonary tuberculosis (TB) and external injuries were responsible for 43% and 31% of the sex difference in life expectancy among the HIV negative population, and 81% and 16% of the difference among people living with HIV. CONCLUSIONS: The sex differences in adult life expectancy in rural KwaZulu-Natal are exceptionally large, atypical for an African population, and largely driven by high male mortality from pulmonary TB and injuries. This is the case for both HIV positive and HIV negative men and women, signalling a need to improve the engagement of men with health services, irrespective of their HIV status
    corecore