102 research outputs found

    Graph Annotations in Modeling Complex Network Topologies

    Full text link
    The coarsest approximation of the structure of a complex network, such as the Internet, is a simple undirected unweighted graph. This approximation, however, loses too much detail. In reality, objects represented by vertices and edges in such a graph possess some non-trivial internal structure that varies across and differentiates among distinct types of links or nodes. In this work, we abstract such additional information as network annotations. We introduce a network topology modeling framework that treats annotations as an extended correlation profile of a network. Assuming we have this profile measured for a given network, we present an algorithm to rescale it in order to construct networks of varying size that still reproduce the original measured annotation profile. Using this methodology, we accurately capture the network properties essential for realistic simulations of network applications and protocols, or any other simulations involving complex network topologies, including modeling and simulation of network evolution. We apply our approach to the Autonomous System (AS) topology of the Internet annotated with business relationships between ASs. This topology captures the large-scale structure of the Internet. In depth understanding of this structure and tools to model it are cornerstones of research on future Internet architectures and designs. We find that our techniques are able to accurately capture the structure of annotation correlations within this topology, thus reproducing a number of its important properties in synthetically-generated random graphs

    Resilience of the Internet to random breakdowns

    Full text link
    A common property of many large networks, including the Internet, is that the connectivity of the various nodes follows a scale-free power-law distribution, P(k)=ck^-a. We study the stability of such networks with respect to crashes, such as random removal of sites. Our approach, based on percolation theory, leads to a general condition for the critical fraction of nodes, p_c, that need to be removed before the network disintegrates. We show that for a<=3 the transition never takes place, unless the network is finite. In the special case of the Internet (a=2.5), we find that it is impressively robust, where p_c is approximately 0.99.Comment: latex, 3 pages, 1 figure (eps), explanations added, Phys. Rev. Lett., in pres

    Error and attack tolerance of complex networks

    Full text link
    Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.Comment: 14 pages, 4 figures, Late

    Universal Behavior of Load Distribution in Scale-free Networks

    Full text link
    We study a problem of data packet transport in scale-free networks whose degree distribution follows a power-law with the exponent γ\gamma. We define load at each vertex as the accumulated total number of data packets passing through that vertex when every pair of vertices send and receive a data packet along the shortest path connecting the pair. It is found that the load distribution follows a power-law with the exponent δ2.2(1)\delta \approx 2.2(1), insensitive to different values of γ\gamma in the range, 2<γ32 < \gamma \le 3, and different mean degrees, which is valid for both undirected and directed cases. Thus, we conjecture that the load exponent is a universal quantity to characterize scale-free networks.Comment: 5 pages, 5 figures, revised versio

    DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death

    Get PDF
    The comet assay or single cell gel electrophoresis, is the most common method used to measure strand breaks and a variety of other DNA lesions in human populations. To estimate the risk of overall mortality, mortality by cause, and cancer incidence associated to DNA damage, a cohort of 2,403 healthy individuals (25,978 person-years) screened in 16 laboratories using the comet assay between 1996 and 2016 was followed-up. Kaplan-Meier analysis indicated a worse overall survival in the medium and high tertile of DNA damage (p < 0.001). The effect of DNA damage on survival was modelled according to Cox proportional hazard regression model. The adjusted hazard ratio (HR) was 1.42 (1.06-1.90) for overall mortality, and 1.94 (1.04-3.59) for diseases of the circulatory system in subjects with the highest tertile of DNA damage. The findings of this study provide epidemiological evidence encouraging the implementation of the comet assay in preventive strategies for non-communicable diseases

    Re-Shape: A Method to Teach Data Ethics for Data Science Education

    Get PDF
    Data has become central to the technologies and services that human-computer interaction (HCI) designers make, and the ethical use of data in and through these technologies should be given critical attention throughout the design process. However, there is little research on ethics education in computer science that explicitly addresses data ethics. We present and analyze Re-Shape, a method to teach students about the ethical implications of data collection and use. Re-Shape, as part of an educational environment, builds upon the idea of cultivating care and allows students to collect, process, and visualizetheir physical movement data in ways that support critical reflection and coordinated classroom activities about data, data privacy, and human-centered systems for data science. We also use a case study of Re-Shape in an undergraduate computer science course to explore prospects and limitations of instructional designs and educational technology such as Re-Shape that leverage personal data to teach data ethics
    corecore