62 research outputs found

    Voltage-dependent cationic channels formed by a cytolytic toxin produced by Gardnerella vaginalis

    Get PDF
    AbstractA cytolytic toxin produced by G. vaginalis was incorporated in artificial membranes and giant liposomes. The toxin formed ionic channels when incorporated in lipid bilayers. The electrical properties of such channels were studied. Current records revealed a unitary conductance of 126 pS (in symmetrical 150 mM KCl). The open state probability of the cytolysin formed channels was a function of the applied membrane potential. The permeability ratio of cations to anions was estimated to be 6.5

    Nanomolar CFTR Inhibition by Pore-Occluding Divalent Polyethylene Glycol-Malonic Acid Hydrazides

    Get PDF
    SummaryInhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have potential application as antisecretory therapy in cholera. We synthesized mono- and divalent CFTR inhibitors consisting of a malonic acid hydrazide (MalH) coupled via a disulfonic stilbene linker to polyethylene glycols (PEGs; 0.2–100 kDa). IC50 values for CFTR inhibition were 10–15 ÎŒM for the monovalent MalH-PEGs, but substantially lower for divalent MalH-PEG-MalH compounds, decreasing from 1.5 to 0.3 ÎŒM with increasing PEG size and showing positive cooperativity. Whole-cell patch-clamp showed voltage-dependent CFTR block with inward rectification. Outside-out patch-clamp showed shortened single-channel openings, indicating CFTR pore block from the extracellular side. Luminally added MalH-PEG-MalH blocked by >90% cholera toxin-induced fluid secretion in mouse intestinal loops (IC50 ∌10 pmol/loop), and greatly reduced mortality in a suckling mouse cholera model. These conjugates may provide safe, inexpensive antisecretory therapy

    IL-4 Is a Potent Modulator of Ion Transport in the Human Bronchial Epithelium In Vitro

    Get PDF
    AbstractRecent data show that proinflammatory stimuli may modify significantly ion transport in the airway epithelium and therefore the properties of the airway surface fluid. We have studied the effect of IL-4, a cytokine involved in the pathogenesis of asthma, on transepithelial ion transport in the human bronchial epithelium in vitro. Incubation of polarized bronchial epithelial cells with IL-4 for 6–48 h causes a marked inhibition of the amiloride-sensitive Na+ channel as measured in short circuit current experiments. On the other hand, IL-4 evokes a 2-fold increase in the current activated by a cAMP analog, which reflects the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, IL-4 enhances the response to apical UTP, an agonist that activates Ca2+-dependent Cl− channels. These effects are mimicked by IL-13 and blocked by an antagonist of IL-4Rα. RT-PCR experiments show that IL-4 elicits a 7-fold decrease in the level of the Îł amiloride-sensitive Na+ channel mRNA, one of the subunits of the amiloride-sensitive Na+ channel, and an increase in CFTR mRNA. Our data suggest that IL-4 may favor the hydration of the airway surface by decreasing Na+ absorption and increasing Cl− secretion. This could be required to fluidify the mucus, which is hypersecreted during inflammatory conditions. On the other hand, the modifications of ion transport could also affect the ion composition of airway surface fluid

    In vitro recapitulation of the site-specific editing (to wild-type) of mutant IDS mRNA transcripts, and the characterization of IDS protein translated from the edited mRNAs

    Get PDF
    The transfer of genomic information into the primary RNA sequence can be altered by RNA editing. We have previously shown that genomic variants can be RNA-edited to wild-type. The presence of distinct “edited” iduronate 2-sulfatase (IDS) mRNA transcripts ex vivo evidenced the correction of a nonsense and frameshift variant, respectively, in three unrelated Hunter syndrome patients. This phenomenon was confirmed in various patient samples by a variety of techniques, and was quantified by single-nucleotide primer extension. Western blotting also confirmed the presence of IDS protein similar in size to the wild-type. Since preliminary experimental evidence suggested that the “corrected” IDS proteins produced by the patients were similar in molecular weight and net charge to their wild-type counterparts, an in vitro system employing different cell types was established to recapitulate the site-specific editing of IDS RNA (uridine to cytidine conversion and uridine deletion), and to confirm the findings previously observed ex vivo in the three patients. In addition, confocal microscopy and flow cytometry analyses demonstrated the expression and lysosomal localization in HEK293 cells of GFP-labeled proteins translated from edited IDS mRNAs. Confocal high-content analysis of the two patients’ cells expressing wild-type or mutated IDS confirmed lysosomal localization and showed no accumulation in the Golgi or early endosomes

    TITLE PAGE α-AMINOAZAHETEROCYCLIC-METHYLGLYOXAL ADDUCTS DO NOT INHIBIT CFTR CHLORIDE CHANNEL ACTIVITY

    Get PDF
    ABSTRACT Inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have potential applications in the therapy of secretory diarrheas and polycystic kidney disease. Recently, several highly polar α-aminoazaheterocyclic-methylglyoxal adducts were reported to reversibly inhibit CFTR chloride channel activity with IC50 values in the low picomolar range (Routaboul et al. J. Pharmacol. Exp. Ther. 322:1023-1035, more than 10,000-fold better than that of thiazolidionone and glycine hydrazide CFTR inhibitors identified previously by highthroughout screening. Here, we resynthesized and evaluated the α-aminoazaheterocyclicmethylglyoxal adducts of Routaboul et al. reported to have high CFTR inhibition potency (compounds 5, 7 and 8). We verified that the reported synthesis procedures produced the target compounds in high yield. However, we found that these compounds did not inhibit CFTR chloride channel function in multiple cell lines at up to 100 ”M concentration, using three independent assays of CFTR function including short-circuit current analysis, whole-cell patch-clamp and YFPfluorescence quenching. As positive controls, near 100% CFTR inhibition was found by thiazolidionone and glycine hydrazide CFTR inhibitors. Our data provide direct evidence against CFTR inhibition by α-aminoazaheterocyclic-methylglyoxal adducts

    CFTR pharmacology

    No full text
    CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease

    Functional analysis of mutations in the putative binding site for cystic fibrosis transmembrane conductance regulator potentiators: Interaction between activation and inhibition

    Get PDF
    An increasing number of compounds able to potentiate the activity of mutants of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have been identified by high throughput screening or by individual search of derivatives of known active compounds. Several lines of evidence suggest that most CFTR potentiators act through the same mechanism, probably by binding to the nucleotide binding domains to promote the activity of the protein and then, with lower affinity, to an inhibitory site. With the aim of identifying the activating binding site, we recently modeled the nucleotide binding domain dimer and predicted a common binding site for potentiators in its interface. To validate this model experimentally, we mutated some of the residues involved in the putative binding site, i.e. Arg(553), Ala(554), and Val(1293). The activity of CFTR potentiators was measured as apical membrane currents on polarized cells stably expressing wild type or mutated proteins. CFTR activity was elicited by application of a membrane-permeable cAMP analogue followed by increasing concentrations of potentiators. We found that all three mutants responded to cAMP, although the affinity of R553Q was higher than that of wild type CFTR. In R553Q and V1293G mutants, the dissociation constant of potentiators for the activating site was increased, whereas the dissociation constant for the inhibitory site was reduced. Our results show that the mutated residues are part of the activating binding site for potentiators, as suggested by the molecular model. In addition, these results suggest that the activating and inhibitory sites are not independent of each other

    High-throughput screening of libraries of compounds to identify CFTR modulators

    No full text
    Small molecules acting as selective activators (potentiators), inhibitors, or "correctors" of the CFTR chloride channel represent candidate drugs for various pathological conditions including cystic fibrosis and secretory diarrhea. The identification of CFTR pharmacological modulators may be achieved by screening highly diverse synthetic or natural compound libraries using high-throughput methods. A convenient assay for CFTR function is based on the halide sensitivity of the yellow fluorescent protein (YFP). CFTR activity can be simply assessed by measuring the rate of YFP signal decrease caused by iodide influx. This assay can be automated to test thousands of compounds per day

    Analysis of ion transport in the airway epithelium using RNA interference

    No full text
    Knowledge of the physiology of airway epithelium had been limited by the lack of potent and selective inhibitors of the ion channels, transporters and regulators involved in transepithelial electrolyte and fluid transport. The use of siRNA technology to downregulate the expression of a given gene represents a useful method for studying the function of proteins in both native cells and tissues, enabling a more precise assessment of the contribution of single proteins to the general transport process in the airway epithelium and an evaluation of the contribution of these proteins in various respiratory conditions. This review focuses on recent research involving siRNA-based silencing of proteins implicated in ion transport through the airway epithelium, illustrating how this technology has increased our understanding of the function and regulation of the transport pathway, and has helped to identify new targets for drugs and to uncover the function of newly identified proteins
    • 

    corecore